Metamath Proof Explorer


Theorem ltsub1

Description: Subtraction from both sides of 'less than'. (Contributed by FL, 3-Jan-2008) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltsub1 A B C A < B A C < B C

Proof

Step Hyp Ref Expression
1 lesub1 B A C B A B C A C
2 1 3com12 A B C B A B C A C
3 2 notbid A B C ¬ B A ¬ B C A C
4 simp1 A B C A
5 simp2 A B C B
6 4 5 ltnled A B C A < B ¬ B A
7 simp3 A B C C
8 4 7 resubcld A B C A C
9 5 7 resubcld A B C B C
10 8 9 ltnled A B C A C < B C ¬ B C A C
11 3 6 10 3bitr4d A B C A < B A C < B C