Metamath Proof Explorer


Theorem ltsub13d

Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
ltsub13d.4 φ A < B C
Assertion ltsub13d φ C < B A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 ltsub13d.4 φ A < B C
5 ltsub13 A B C A < B C C < B A
6 1 2 3 5 syl3anc φ A < B C C < B A
7 4 6 mpbid φ C < B A