Metamath Proof Explorer


Theorem ltsub2

Description: Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltsub2 A B C A < B C B < C A

Proof

Step Hyp Ref Expression
1 lesub2 B A C B A C A C B
2 1 3com12 A B C B A C A C B
3 2 notbid A B C ¬ B A ¬ C A C B
4 simp1 A B C A
5 simp2 A B C B
6 4 5 ltnled A B C A < B ¬ B A
7 simp3 A B C C
8 7 5 resubcld A B C C B
9 7 4 resubcld A B C C A
10 8 9 ltnled A B C C B < C A ¬ C A C B
11 3 6 10 3bitr4d A B C A < B C B < C A