Metamath Proof Explorer


Theorem ltsub23d

Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
ltsub23d.4 φ A B < C
Assertion ltsub23d φ A C < B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 ltsub23d.4 φ A B < C
5 ltsub23 A B C A B < C A C < B
6 1 2 3 5 syl3anc φ A B < C A C < B
7 4 6 mpbid φ A C < B