Metamath Proof Explorer


Theorem ltsubadd2

Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997)

Ref Expression
Assertion ltsubadd2 A B C A B < C A < B + C

Proof

Step Hyp Ref Expression
1 ltsubadd A B C A B < C A < C + B
2 simp2 A B C B
3 2 recnd A B C B
4 simp3 A B C C
5 4 recnd A B C C
6 3 5 addcomd A B C B + C = C + B
7 6 breq2d A B C A < B + C A < C + B
8 1 7 bitr4d A B C A B < C A < B + C