Metamath Proof Explorer


Theorem ltsubrp

Description: Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion ltsubrp A B + A B < A

Proof

Step Hyp Ref Expression
1 elrp B + B 0 < B
2 ltsubpos B A 0 < B A B < A
3 2 biimpd B A 0 < B A B < A
4 3 expcom A B 0 < B A B < A
5 4 imp32 A B 0 < B A B < A
6 1 5 sylan2b A B + A B < A