Metamath Proof Explorer


Theorem lttri3

Description: Trichotomy law for 'less than'. (Contributed by NM, 5-May-1999)

Ref Expression
Assertion lttri3 A B A = B ¬ A < B ¬ B < A

Proof

Step Hyp Ref Expression
1 ltso < Or
2 sotrieq2 < Or A B A = B ¬ A < B ¬ B < A
3 1 2 mpan A B A = B ¬ A < B ¬ B < A