Metamath Proof Explorer


Theorem lttri4d

Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
Assertion lttri4d φ A < B A = B B < A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 lttri4 A B A < B A = B B < A
4 1 2 3 syl2anc φ A < B A = B B < A