Metamath Proof Explorer


Theorem lttrid

Description: Ordering on reals satisfies strict trichotomy. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
Assertion lttrid φ A < B ¬ A = B B < A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 axlttri A B A < B ¬ A = B B < A
4 1 2 3 syl2anc φ A < B ¬ A = B B < A