Metamath Proof Explorer


Theorem ltxr

Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of Gleason p. 173. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion ltxr A * B * A < B A B A < B A = −∞ B = +∞ A B = +∞ A = −∞ B

Proof

Step Hyp Ref Expression
1 breq12 x = A y = B x < y A < B
2 df-3an x y x < y x y x < y
3 2 opabbii x y | x y x < y = x y | x y x < y
4 1 3 brab2a A x y | x y x < y B A B A < B
5 4 a1i A * B * A x y | x y x < y B A B A < B
6 brun A −∞ × +∞ −∞ × B A −∞ × +∞ B A −∞ × B
7 brxp A −∞ × +∞ B A −∞ B +∞
8 elun A −∞ A A −∞
9 orcom A A −∞ A −∞ A
10 8 9 bitri A −∞ A −∞ A
11 elsng A * A −∞ A = −∞
12 11 orbi1d A * A −∞ A A = −∞ A
13 10 12 syl5bb A * A −∞ A = −∞ A
14 elsng B * B +∞ B = +∞
15 13 14 bi2anan9 A * B * A −∞ B +∞ A = −∞ A B = +∞
16 andir A = −∞ A B = +∞ A = −∞ B = +∞ A B = +∞
17 15 16 bitrdi A * B * A −∞ B +∞ A = −∞ B = +∞ A B = +∞
18 7 17 syl5bb A * B * A −∞ × +∞ B A = −∞ B = +∞ A B = +∞
19 brxp A −∞ × B A −∞ B
20 11 anbi1d A * A −∞ B A = −∞ B
21 20 adantr A * B * A −∞ B A = −∞ B
22 19 21 syl5bb A * B * A −∞ × B A = −∞ B
23 18 22 orbi12d A * B * A −∞ × +∞ B A −∞ × B A = −∞ B = +∞ A B = +∞ A = −∞ B
24 orass A = −∞ B = +∞ A B = +∞ A = −∞ B A = −∞ B = +∞ A B = +∞ A = −∞ B
25 23 24 bitrdi A * B * A −∞ × +∞ B A −∞ × B A = −∞ B = +∞ A B = +∞ A = −∞ B
26 6 25 syl5bb A * B * A −∞ × +∞ −∞ × B A = −∞ B = +∞ A B = +∞ A = −∞ B
27 5 26 orbi12d A * B * A x y | x y x < y B A −∞ × +∞ −∞ × B A B A < B A = −∞ B = +∞ A B = +∞ A = −∞ B
28 df-ltxr < = x y | x y x < y −∞ × +∞ −∞ ×
29 28 breqi A < B A x y | x y x < y −∞ × +∞ −∞ × B
30 brun A x y | x y x < y −∞ × +∞ −∞ × B A x y | x y x < y B A −∞ × +∞ −∞ × B
31 29 30 bitri A < B A x y | x y x < y B A −∞ × +∞ −∞ × B
32 orass A B A < B A = −∞ B = +∞ A B = +∞ A = −∞ B A B A < B A = −∞ B = +∞ A B = +∞ A = −∞ B
33 27 31 32 3bitr4g A * B * A < B A B A < B A = −∞ B = +∞ A B = +∞ A = −∞ B