Database
BASIC ORDER THEORY
Partially ordered sets (posets)
lubdm
Next ⟩
lubfun
Metamath Proof Explorer
Ascii
Unicode
Theorem
lubdm
Description:
Domain of the least upper bound function of a poset.
(Contributed by
NM
, 6-Sep-2018)
Ref
Expression
Hypotheses
lubfval.b
⊢
B
=
Base
K
lubfval.l
⊢
≤
˙
=
≤
K
lubfval.u
⊢
U
=
lub
⁡
K
lubfval.p
⊢
ψ
↔
∀
y
∈
s
y
≤
˙
x
∧
∀
z
∈
B
∀
y
∈
s
y
≤
˙
z
→
x
≤
˙
z
lubfval.k
⊢
φ
→
K
∈
V
Assertion
lubdm
⊢
φ
→
dom
⁡
U
=
s
∈
𝒫
B
|
∃!
x
∈
B
ψ
Proof
Step
Hyp
Ref
Expression
1
lubfval.b
⊢
B
=
Base
K
2
lubfval.l
⊢
≤
˙
=
≤
K
3
lubfval.u
⊢
U
=
lub
⁡
K
4
lubfval.p
⊢
ψ
↔
∀
y
∈
s
y
≤
˙
x
∧
∀
z
∈
B
∀
y
∈
s
y
≤
˙
z
→
x
≤
˙
z
5
lubfval.k
⊢
φ
→
K
∈
V
6
1
2
3
4
5
lubfval
⊢
φ
→
U
=
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
7
6
dmeqd
⊢
φ
→
dom
⁡
U
=
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
8
riotaex
⊢
ι
x
∈
B
|
ψ
∈
V
9
eqid
⊢
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
=
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
10
8
9
dmmpti
⊢
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
=
𝒫
B
11
10
ineq2i
⊢
s
|
∃!
x
∈
B
ψ
∩
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
=
s
|
∃!
x
∈
B
ψ
∩
𝒫
B
12
dmres
⊢
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
=
s
|
∃!
x
∈
B
ψ
∩
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
13
dfrab2
⊢
s
∈
𝒫
B
|
∃!
x
∈
B
ψ
=
s
|
∃!
x
∈
B
ψ
∩
𝒫
B
14
11
12
13
3eqtr4i
⊢
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
=
s
∈
𝒫
B
|
∃!
x
∈
B
ψ
15
7
14
eqtrdi
⊢
φ
→
dom
⁡
U
=
s
∈
𝒫
B
|
∃!
x
∈
B
ψ