Metamath Proof Explorer


Theorem lubdm

Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018)

Ref Expression
Hypotheses lubfval.b B = Base K
lubfval.l ˙ = K
lubfval.u U = lub K
lubfval.p ψ y s y ˙ x z B y s y ˙ z x ˙ z
lubfval.k φ K V
Assertion lubdm φ dom U = s 𝒫 B | ∃! x B ψ

Proof

Step Hyp Ref Expression
1 lubfval.b B = Base K
2 lubfval.l ˙ = K
3 lubfval.u U = lub K
4 lubfval.p ψ y s y ˙ x z B y s y ˙ z x ˙ z
5 lubfval.k φ K V
6 1 2 3 4 5 lubfval φ U = s 𝒫 B ι x B | ψ s | ∃! x B ψ
7 6 dmeqd φ dom U = dom s 𝒫 B ι x B | ψ s | ∃! x B ψ
8 riotaex ι x B | ψ V
9 eqid s 𝒫 B ι x B | ψ = s 𝒫 B ι x B | ψ
10 8 9 dmmpti dom s 𝒫 B ι x B | ψ = 𝒫 B
11 10 ineq2i s | ∃! x B ψ dom s 𝒫 B ι x B | ψ = s | ∃! x B ψ 𝒫 B
12 dmres dom s 𝒫 B ι x B | ψ s | ∃! x B ψ = s | ∃! x B ψ dom s 𝒫 B ι x B | ψ
13 dfrab2 s 𝒫 B | ∃! x B ψ = s | ∃! x B ψ 𝒫 B
14 11 12 13 3eqtr4i dom s 𝒫 B ι x B | ψ s | ∃! x B ψ = s 𝒫 B | ∃! x B ψ
15 7 14 eqtrdi φ dom U = s 𝒫 B | ∃! x B ψ