Metamath Proof Explorer


Theorem lubel

Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses lublem.b B = Base K
lublem.l ˙ = K
lublem.u U = lub K
Assertion lubel K CLat X S S B X ˙ U S

Proof

Step Hyp Ref Expression
1 lublem.b B = Base K
2 lublem.l ˙ = K
3 lublem.u U = lub K
4 clatl K CLat K Lat
5 ssel S B X S X B
6 5 impcom X S S B X B
7 1 3 lubsn K Lat X B U X = X
8 4 6 7 syl2an K CLat X S S B U X = X
9 8 3impb K CLat X S S B U X = X
10 snssi X S X S
11 1 2 3 lubss K CLat S B X S U X ˙ U S
12 10 11 syl3an3 K CLat S B X S U X ˙ U S
13 12 3com23 K CLat X S S B U X ˙ U S
14 9 13 eqbrtrrd K CLat X S S B X ˙ U S