Metamath Proof Explorer


Theorem lubelss

Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubs.b B=BaseK
lubs.l ˙=K
lubs.u U=lubK
lubs.k φKV
lubs.s φSdomU
Assertion lubelss φSB

Proof

Step Hyp Ref Expression
1 lubs.b B=BaseK
2 lubs.l ˙=K
3 lubs.u U=lubK
4 lubs.k φKV
5 lubs.s φSdomU
6 biid ySy˙xzBySy˙zx˙zySy˙xzBySy˙zx˙z
7 1 2 3 6 4 lubeldm φSdomUSB∃!xBySy˙xzBySy˙zx˙z
8 5 7 mpbid φSB∃!xBySy˙xzBySy˙zx˙z
9 8 simpld φSB