Metamath Proof Explorer


Theorem lubelss

Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubs.b B = Base K
lubs.l ˙ = K
lubs.u U = lub K
lubs.k φ K V
lubs.s φ S dom U
Assertion lubelss φ S B

Proof

Step Hyp Ref Expression
1 lubs.b B = Base K
2 lubs.l ˙ = K
3 lubs.u U = lub K
4 lubs.k φ K V
5 lubs.s φ S dom U
6 biid y S y ˙ x z B y S y ˙ z x ˙ z y S y ˙ x z B y S y ˙ z x ˙ z
7 1 2 3 6 4 lubeldm φ S dom U S B ∃! x B y S y ˙ x z B y S y ˙ z x ˙ z
8 5 7 mpbid φ S B ∃! x B y S y ˙ x z B y S y ˙ z x ˙ z
9 8 simpld φ S B