Metamath Proof Explorer


Theorem lublem

Description: Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b B = Base K
lublem.l ˙ = K
lublem.u U = lub K
Assertion lublem K CLat S B y S y ˙ U S z B y S y ˙ z U S ˙ z

Proof

Step Hyp Ref Expression
1 lublem.b B = Base K
2 lublem.l ˙ = K
3 lublem.u U = lub K
4 simpl K CLat S B K CLat
5 1 3 clatlubcl2 K CLat S B S dom U
6 1 2 3 4 5 lubprop K CLat S B y S y ˙ U S z B y S y ˙ z U S ˙ z