Metamath Proof Explorer


Theorem lubpr

Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses lubpr.k φKPoset
lubpr.b B=BaseK
lubpr.x φXB
lubpr.y φYB
lubpr.l ˙=K
lubpr.c φX˙Y
lubpr.s φS=XY
lubpr.u U=lubK
Assertion lubpr φUS=Y

Proof

Step Hyp Ref Expression
1 lubpr.k φKPoset
2 lubpr.b B=BaseK
3 lubpr.x φXB
4 lubpr.y φYB
5 lubpr.l ˙=K
6 lubpr.c φX˙Y
7 lubpr.s φS=XY
8 lubpr.u U=lubK
9 1 2 3 4 5 6 7 8 lubprlem φSdomUUS=Y
10 9 simprd φUS=Y