Metamath Proof Explorer


Theorem lubsn

Description: The least upper bound of a singleton. ( chsupsn analog.) (Contributed by NM, 20-Oct-2011)

Ref Expression
Hypotheses lubsn.b B = Base K
lubsn.u U = lub K
Assertion lubsn K Lat X B U X = X

Proof

Step Hyp Ref Expression
1 lubsn.b B = Base K
2 lubsn.u U = lub K
3 dfsn2 X = X X
4 3 fveq2i U X = U X X
5 eqid join K = join K
6 simpl K Lat X B K Lat
7 simpr K Lat X B X B
8 2 5 6 7 7 joinval K Lat X B X join K X = U X X
9 4 8 eqtr4id K Lat X B U X = X join K X
10 1 5 latjidm K Lat X B X join K X = X
11 9 10 eqtrd K Lat X B U X = X