Step |
Hyp |
Ref |
Expression |
1 |
|
lubsscl.k |
|
2 |
|
lubsscl.t |
|
3 |
|
lubsscl.u |
|
4 |
|
lubsscl.s |
|
5 |
|
lubsscl.x |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
6 7 3 1 4
|
lubelss |
|
9 |
2 8
|
sstrd |
|
10 |
9 5
|
sseldd |
|
11 |
1
|
adantr |
|
12 |
4
|
adantr |
|
13 |
2
|
sselda |
|
14 |
6 7 3 11 12 13
|
luble |
|
15 |
14
|
ralrimiva |
|
16 |
|
breq1 |
|
17 |
|
simp3 |
|
18 |
5
|
3ad2ant1 |
|
19 |
16 17 18
|
rspcdva |
|
20 |
19
|
3expia |
|
21 |
20
|
ralrimiva |
|
22 |
|
breq2 |
|
23 |
22
|
ralbidv |
|
24 |
|
breq1 |
|
25 |
24
|
imbi2d |
|
26 |
25
|
ralbidv |
|
27 |
23 26
|
anbi12d |
|
28 |
27
|
rspcev |
|
29 |
10 15 21 28
|
syl12anc |
|
30 |
|
biid |
|
31 |
6 7 3 30 1
|
lubeldm2 |
|
32 |
9 29 31
|
mpbir2and |
|
33 |
7 6 3 1 9 10 14 19
|
poslubd |
|
34 |
32 33
|
jca |
|