Metamath Proof Explorer


Theorem lubub

Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b B = Base K
lublem.l ˙ = K
lublem.u U = lub K
Assertion lubub K CLat S B X S X ˙ U S

Proof

Step Hyp Ref Expression
1 lublem.b B = Base K
2 lublem.l ˙ = K
3 lublem.u U = lub K
4 1 2 3 lublem K CLat S B y S y ˙ U S z B y S y ˙ z U S ˙ z
5 4 simpld K CLat S B y S y ˙ U S
6 breq1 y = X y ˙ U S X ˙ U S
7 6 rspccva y S y ˙ U S X S X ˙ U S
8 5 7 stoic3 K CLat S B X S X ˙ U S