Metamath Proof Explorer


Theorem lvecindp

Description: Compute the X coefficient in a sum with an independent vector X (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions Y and Z (second conjunct). Typically, U is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 19-Jul-2022)

Ref Expression
Hypotheses lvecindp.v V = Base W
lvecindp.p + ˙ = + W
lvecindp.f F = Scalar W
lvecindp.k K = Base F
lvecindp.t · ˙ = W
lvecindp.s S = LSubSp W
lvecindp.w φ W LVec
lvecindp.u φ U S
lvecindp.x φ X V
lvecindp.n φ ¬ X U
lvecindp.y φ Y U
lvecindp.z φ Z U
lvecindp.a φ A K
lvecindp.b φ B K
lvecindp.e φ A · ˙ X + ˙ Y = B · ˙ X + ˙ Z
Assertion lvecindp φ A = B Y = Z

Proof

Step Hyp Ref Expression
1 lvecindp.v V = Base W
2 lvecindp.p + ˙ = + W
3 lvecindp.f F = Scalar W
4 lvecindp.k K = Base F
5 lvecindp.t · ˙ = W
6 lvecindp.s S = LSubSp W
7 lvecindp.w φ W LVec
8 lvecindp.u φ U S
9 lvecindp.x φ X V
10 lvecindp.n φ ¬ X U
11 lvecindp.y φ Y U
12 lvecindp.z φ Z U
13 lvecindp.a φ A K
14 lvecindp.b φ B K
15 lvecindp.e φ A · ˙ X + ˙ Y = B · ˙ X + ˙ Z
16 eqid 0 W = 0 W
17 eqid Cntz W = Cntz W
18 lveclmod W LVec W LMod
19 7 18 syl φ W LMod
20 eqid LSpan W = LSpan W
21 1 20 lspsnsubg W LMod X V LSpan W X SubGrp W
22 19 9 21 syl2anc φ LSpan W X SubGrp W
23 6 lsssssubg W LMod S SubGrp W
24 19 23 syl φ S SubGrp W
25 24 8 sseldd φ U SubGrp W
26 1 16 20 6 7 8 9 10 lspdisj φ LSpan W X U = 0 W
27 lmodabl W LMod W Abel
28 19 27 syl φ W Abel
29 17 28 22 25 ablcntzd φ LSpan W X Cntz W U
30 1 5 3 4 20 19 13 9 lspsneli φ A · ˙ X LSpan W X
31 1 5 3 4 20 19 14 9 lspsneli φ B · ˙ X LSpan W X
32 2 16 17 22 25 26 29 30 31 11 12 15 subgdisj1 φ A · ˙ X = B · ˙ X
33 16 6 19 8 10 lssvneln0 φ X 0 W
34 1 5 3 4 16 7 13 14 9 33 lvecvscan2 φ A · ˙ X = B · ˙ X A = B
35 32 34 mpbid φ A = B
36 2 16 17 22 25 26 29 30 31 11 12 15 subgdisj2 φ Y = Z
37 35 36 jca φ A = B Y = Z