Metamath Proof Explorer


Theorem lvolbase

Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses lvolbase.b B = Base K
lvolbase.v V = LVols K
Assertion lvolbase X V X B

Proof

Step Hyp Ref Expression
1 lvolbase.b B = Base K
2 lvolbase.v V = LVols K
3 n0i X V ¬ V =
4 2 eqeq1i V = LVols K =
5 3 4 sylnib X V ¬ LVols K =
6 fvprc ¬ K V LVols K =
7 5 6 nsyl2 X V K V
8 eqid K = K
9 eqid LPlanes K = LPlanes K
10 1 8 9 2 islvol K V X V X B x LPlanes K x K X
11 10 simprbda K V X V X B
12 7 11 mpancom X V X B