Metamath Proof Explorer


Theorem lvolex3N

Description: There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvolex3.l ˙ = K
lvolex3.a A = Atoms K
lvolex3.p P = LPlanes K
Assertion lvolex3N K HL X P q A ¬ q ˙ X

Proof

Step Hyp Ref Expression
1 lvolex3.l ˙ = K
2 lvolex3.a A = Atoms K
3 lvolex3.p P = LPlanes K
4 eqid Base K = Base K
5 eqid join K = join K
6 4 1 5 2 3 islpln2 K HL X P X Base K r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t
7 simp1l K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t K HL
8 simp1rl K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t r A
9 simp1rr K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t s A
10 simp2 K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t t A
11 5 1 2 3dim3 K HL r A s A t A q A ¬ q ˙ r join K s join K t
12 7 8 9 10 11 syl13anc K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t q A ¬ q ˙ r join K s join K t
13 simp33 K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t X = r join K s join K t
14 breq2 X = r join K s join K t q ˙ X q ˙ r join K s join K t
15 14 notbid X = r join K s join K t ¬ q ˙ X ¬ q ˙ r join K s join K t
16 15 rexbidv X = r join K s join K t q A ¬ q ˙ X q A ¬ q ˙ r join K s join K t
17 13 16 syl K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t q A ¬ q ˙ X q A ¬ q ˙ r join K s join K t
18 12 17 mpbird K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t q A ¬ q ˙ X
19 18 rexlimdv3a K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t q A ¬ q ˙ X
20 19 rexlimdvva K HL r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t q A ¬ q ˙ X
21 20 adantld K HL X Base K r A s A t A r s ¬ t ˙ r join K s X = r join K s join K t q A ¬ q ˙ X
22 6 21 sylbid K HL X P q A ¬ q ˙ X
23 22 imp K HL X P q A ¬ q ˙ X