Metamath Proof Explorer


Theorem lvoli3

Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses lvoli3.l ˙ = K
lvoli3.j ˙ = join K
lvoli3.a A = Atoms K
lvoli3.p P = LPlanes K
lvoli3.v V = LVols K
Assertion lvoli3 K HL X P Q A ¬ Q ˙ X X ˙ Q V

Proof

Step Hyp Ref Expression
1 lvoli3.l ˙ = K
2 lvoli3.j ˙ = join K
3 lvoli3.a A = Atoms K
4 lvoli3.p P = LPlanes K
5 lvoli3.v V = LVols K
6 simpl2 K HL X P Q A ¬ Q ˙ X X P
7 simpl3 K HL X P Q A ¬ Q ˙ X Q A
8 simpr K HL X P Q A ¬ Q ˙ X ¬ Q ˙ X
9 eqidd K HL X P Q A ¬ Q ˙ X X ˙ Q = X ˙ Q
10 breq2 y = X r ˙ y r ˙ X
11 10 notbid y = X ¬ r ˙ y ¬ r ˙ X
12 oveq1 y = X y ˙ r = X ˙ r
13 12 eqeq2d y = X X ˙ Q = y ˙ r X ˙ Q = X ˙ r
14 11 13 anbi12d y = X ¬ r ˙ y X ˙ Q = y ˙ r ¬ r ˙ X X ˙ Q = X ˙ r
15 breq1 r = Q r ˙ X Q ˙ X
16 15 notbid r = Q ¬ r ˙ X ¬ Q ˙ X
17 oveq2 r = Q X ˙ r = X ˙ Q
18 17 eqeq2d r = Q X ˙ Q = X ˙ r X ˙ Q = X ˙ Q
19 16 18 anbi12d r = Q ¬ r ˙ X X ˙ Q = X ˙ r ¬ Q ˙ X X ˙ Q = X ˙ Q
20 14 19 rspc2ev X P Q A ¬ Q ˙ X X ˙ Q = X ˙ Q y P r A ¬ r ˙ y X ˙ Q = y ˙ r
21 6 7 8 9 20 syl112anc K HL X P Q A ¬ Q ˙ X y P r A ¬ r ˙ y X ˙ Q = y ˙ r
22 simpl1 K HL X P Q A ¬ Q ˙ X K HL
23 22 hllatd K HL X P Q A ¬ Q ˙ X K Lat
24 eqid Base K = Base K
25 24 4 lplnbase X P X Base K
26 6 25 syl K HL X P Q A ¬ Q ˙ X X Base K
27 24 3 atbase Q A Q Base K
28 7 27 syl K HL X P Q A ¬ Q ˙ X Q Base K
29 24 2 latjcl K Lat X Base K Q Base K X ˙ Q Base K
30 23 26 28 29 syl3anc K HL X P Q A ¬ Q ˙ X X ˙ Q Base K
31 24 1 2 3 4 5 islvol3 K HL X ˙ Q Base K X ˙ Q V y P r A ¬ r ˙ y X ˙ Q = y ˙ r
32 22 30 31 syl2anc K HL X P Q A ¬ Q ˙ X X ˙ Q V y P r A ¬ r ˙ y X ˙ Q = y ˙ r
33 21 32 mpbird K HL X P Q A ¬ Q ˙ X X ˙ Q V