Metamath Proof Explorer


Theorem lvolnelln

Description: No lattice volume is a lattice line. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses lvolnelln.l N = LLines K
lvolnelln.v V = LVols K
Assertion lvolnelln K HL X V ¬ X N

Proof

Step Hyp Ref Expression
1 lvolnelln.l N = LLines K
2 lvolnelln.v V = LVols K
3 hllat K HL K Lat
4 eqid Base K = Base K
5 4 2 lvolbase X V X Base K
6 eqid K = K
7 4 6 latref K Lat X Base K X K X
8 3 5 7 syl2an K HL X V X K X
9 6 1 2 lvolnlelln K HL X V X N ¬ X K X
10 9 3expia K HL X V X N ¬ X K X
11 8 10 mt2d K HL X V ¬ X N