Metamath Proof Explorer


Theorem lvolnlelln

Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lvolnlelln.l ˙ = K
lvolnlelln.n N = LLines K
lvolnlelln.v V = LVols K
Assertion lvolnlelln K HL X V Y N ¬ X ˙ Y

Proof

Step Hyp Ref Expression
1 lvolnlelln.l ˙ = K
2 lvolnlelln.n N = LLines K
3 lvolnlelln.v V = LVols K
4 simp3 K HL X V Y N Y N
5 eqid Base K = Base K
6 eqid join K = join K
7 eqid Atoms K = Atoms K
8 5 6 7 2 islln2 K HL Y N Y Base K p Atoms K q Atoms K p q Y = p join K q
9 8 3ad2ant1 K HL X V Y N Y N Y Base K p Atoms K q Atoms K p q Y = p join K q
10 4 9 mpbid K HL X V Y N Y Base K p Atoms K q Atoms K p q Y = p join K q
11 simp11 K HL X V Y N p Atoms K q Atoms K p q Y = p join K q K HL
12 simp12 K HL X V Y N p Atoms K q Atoms K p q Y = p join K q X V
13 simp2l K HL X V Y N p Atoms K q Atoms K p q Y = p join K q p Atoms K
14 simp2r K HL X V Y N p Atoms K q Atoms K p q Y = p join K q q Atoms K
15 1 6 7 3 lvolnle3at K HL X V p Atoms K p Atoms K q Atoms K ¬ X ˙ p join K p join K q
16 11 12 13 13 14 15 syl23anc K HL X V Y N p Atoms K q Atoms K p q Y = p join K q ¬ X ˙ p join K p join K q
17 simp3r K HL X V Y N p Atoms K q Atoms K p q Y = p join K q Y = p join K q
18 6 7 hlatjidm K HL p Atoms K p join K p = p
19 11 13 18 syl2anc K HL X V Y N p Atoms K q Atoms K p q Y = p join K q p join K p = p
20 19 oveq1d K HL X V Y N p Atoms K q Atoms K p q Y = p join K q p join K p join K q = p join K q
21 17 20 eqtr4d K HL X V Y N p Atoms K q Atoms K p q Y = p join K q Y = p join K p join K q
22 21 breq2d K HL X V Y N p Atoms K q Atoms K p q Y = p join K q X ˙ Y X ˙ p join K p join K q
23 16 22 mtbird K HL X V Y N p Atoms K q Atoms K p q Y = p join K q ¬ X ˙ Y
24 23 3exp K HL X V Y N p Atoms K q Atoms K p q Y = p join K q ¬ X ˙ Y
25 24 rexlimdvv K HL X V Y N p Atoms K q Atoms K p q Y = p join K q ¬ X ˙ Y
26 25 adantld K HL X V Y N Y Base K p Atoms K q Atoms K p q Y = p join K q ¬ X ˙ Y
27 10 26 mpd K HL X V Y N ¬ X ˙ Y