Metamath Proof Explorer


Theorem lvolnlelpln

Description: A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lvolnlelpln.l ˙ = K
lvolnlelpln.p P = LPlanes K
lvolnlelpln.v V = LVols K
Assertion lvolnlelpln K HL X V Y P ¬ X ˙ Y

Proof

Step Hyp Ref Expression
1 lvolnlelpln.l ˙ = K
2 lvolnlelpln.p P = LPlanes K
3 lvolnlelpln.v V = LVols K
4 simp3 K HL X V Y P Y P
5 eqid Base K = Base K
6 eqid join K = join K
7 eqid Atoms K = Atoms K
8 5 1 6 7 2 islpln2 K HL Y P Y Base K q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s
9 8 3ad2ant1 K HL X V Y P Y P Y Base K q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s
10 4 9 mpbid K HL X V Y P Y Base K q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s
11 simp1l1 K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s K HL
12 simp1l2 K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s X V
13 simp1r K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s q Atoms K
14 simp2l K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s r Atoms K
15 simp2r K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s s Atoms K
16 1 6 7 3 lvolnle3at K HL X V q Atoms K r Atoms K s Atoms K ¬ X ˙ q join K r join K s
17 11 12 13 14 15 16 syl23anc K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s ¬ X ˙ q join K r join K s
18 simp33 K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s Y = q join K r join K s
19 18 breq2d K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s X ˙ Y X ˙ q join K r join K s
20 17 19 mtbird K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s ¬ X ˙ Y
21 20 3exp K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s ¬ X ˙ Y
22 21 rexlimdvv K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s ¬ X ˙ Y
23 22 rexlimdva K HL X V Y P q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s ¬ X ˙ Y
24 23 adantld K HL X V Y P Y Base K q Atoms K r Atoms K s Atoms K q r ¬ s ˙ q join K r Y = q join K r join K s ¬ X ˙ Y
25 10 24 mpd K HL X V Y P ¬ X ˙ Y