Metamath Proof Explorer


Theorem lvolnltN

Description: Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvolnlt.s < ˙ = < K
lvolnlt.v V = LVols K
Assertion lvolnltN K HL X V Y V ¬ X < ˙ Y

Proof

Step Hyp Ref Expression
1 lvolnlt.s < ˙ = < K
2 lvolnlt.v V = LVols K
3 1 pltirr K HL X V ¬ X < ˙ X
4 3 3adant3 K HL X V Y V ¬ X < ˙ X
5 breq2 X = Y X < ˙ X X < ˙ Y
6 5 notbid X = Y ¬ X < ˙ X ¬ X < ˙ Y
7 4 6 syl5ibcom K HL X V Y V X = Y ¬ X < ˙ Y
8 eqid K = K
9 8 1 pltle K HL X V Y V X < ˙ Y X K Y
10 8 2 lvolcmp K HL X V Y V X K Y X = Y
11 9 10 sylibd K HL X V Y V X < ˙ Y X = Y
12 11 necon3ad K HL X V Y V X Y ¬ X < ˙ Y
13 7 12 pm2.61dne K HL X V Y V ¬ X < ˙ Y