Metamath Proof Explorer


Theorem lzenom

Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion lzenom N N + 1 ω

Proof

Step Hyp Ref Expression
1 zex V
2 difexg V N + 1 V
3 1 2 mp1i N N + 1 V
4 nnex V
5 4 a1i N V
6 ovex N + 1 - a V
7 6 2a1i N a N + 1 N + 1 - a V
8 ovex N + 1 - b V
9 8 2a1i N b N + 1 - b V
10 simpl N a a N N
11 10 peano2zd N a a N N + 1
12 simprl N a a N a
13 11 12 zsubcld N a a N N + 1 - a
14 zre a a
15 14 ad2antrl N a a N a
16 11 zred N a a N N + 1
17 1red N a a N 1
18 simprr N a a N a N
19 zcn N N
20 19 adantr N a a N N
21 ax-1cn 1
22 pncan N 1 N + 1 - 1 = N
23 20 21 22 sylancl N a a N N + 1 - 1 = N
24 18 23 breqtrrd N a a N a N + 1 - 1
25 15 16 17 24 lesubd N a a N 1 N + 1 - a
26 11 zcnd N a a N N + 1
27 zcn a a
28 27 ad2antrl N a a N a
29 26 28 nncand N a a N N + 1 - N + 1 - a = a
30 29 eqcomd N a a N a = N + 1 - N + 1 - a
31 13 25 30 jca31 N a a N N + 1 - a 1 N + 1 - a a = N + 1 - N + 1 - a
32 31 adantrr N a a N b = N + 1 - a N + 1 - a 1 N + 1 - a a = N + 1 - N + 1 - a
33 eleq1 b = N + 1 - a b N + 1 - a
34 breq2 b = N + 1 - a 1 b 1 N + 1 - a
35 33 34 anbi12d b = N + 1 - a b 1 b N + 1 - a 1 N + 1 - a
36 oveq2 b = N + 1 - a N + 1 - b = N + 1 - N + 1 - a
37 36 eqeq2d b = N + 1 - a a = N + 1 - b a = N + 1 - N + 1 - a
38 35 37 anbi12d b = N + 1 - a b 1 b a = N + 1 - b N + 1 - a 1 N + 1 - a a = N + 1 - N + 1 - a
39 38 ad2antll N a a N b = N + 1 - a b 1 b a = N + 1 - b N + 1 - a 1 N + 1 - a a = N + 1 - N + 1 - a
40 32 39 mpbird N a a N b = N + 1 - a b 1 b a = N + 1 - b
41 simpl N b 1 b N
42 41 peano2zd N b 1 b N + 1
43 simprl N b 1 b b
44 42 43 zsubcld N b 1 b N + 1 - b
45 42 zred N b 1 b N + 1
46 zre N N
47 46 adantr N b 1 b N
48 zre b b
49 48 ad2antrl N b 1 b b
50 47 recnd N b 1 b N
51 pncan2 N 1 N + 1 - N = 1
52 50 21 51 sylancl N b 1 b N + 1 - N = 1
53 simprr N b 1 b 1 b
54 52 53 eqbrtrd N b 1 b N + 1 - N b
55 45 47 49 54 subled N b 1 b N + 1 - b N
56 42 zcnd N b 1 b N + 1
57 zcn b b
58 57 ad2antrl N b 1 b b
59 56 58 nncand N b 1 b N + 1 - N + 1 - b = b
60 59 eqcomd N b 1 b b = N + 1 - N + 1 - b
61 44 55 60 jca31 N b 1 b N + 1 - b N + 1 - b N b = N + 1 - N + 1 - b
62 61 adantrr N b 1 b a = N + 1 - b N + 1 - b N + 1 - b N b = N + 1 - N + 1 - b
63 eleq1 a = N + 1 - b a N + 1 - b
64 breq1 a = N + 1 - b a N N + 1 - b N
65 63 64 anbi12d a = N + 1 - b a a N N + 1 - b N + 1 - b N
66 oveq2 a = N + 1 - b N + 1 - a = N + 1 - N + 1 - b
67 66 eqeq2d a = N + 1 - b b = N + 1 - a b = N + 1 - N + 1 - b
68 65 67 anbi12d a = N + 1 - b a a N b = N + 1 - a N + 1 - b N + 1 - b N b = N + 1 - N + 1 - b
69 68 ad2antll N b 1 b a = N + 1 - b a a N b = N + 1 - a N + 1 - b N + 1 - b N b = N + 1 - N + 1 - b
70 62 69 mpbird N b 1 b a = N + 1 - b a a N b = N + 1 - a
71 40 70 impbida N a a N b = N + 1 - a b 1 b a = N + 1 - b
72 ellz1 N a N + 1 a a N
73 72 anbi1d N a N + 1 b = N + 1 - a a a N b = N + 1 - a
74 elnnz1 b b 1 b
75 74 a1i N b b 1 b
76 75 anbi1d N b a = N + 1 - b b 1 b a = N + 1 - b
77 71 73 76 3bitr4d N a N + 1 b = N + 1 - a b a = N + 1 - b
78 3 5 7 9 77 en2d N N + 1
79 nnenom ω
80 entr N + 1 ω N + 1 ω
81 78 79 80 sylancl N N + 1 ω