Metamath Proof Explorer


Theorem m1detdiag

Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D = N maDet R
mdetdiag.a A = N Mat R
mdetdiag.b B = Base A
Assertion m1detdiag R CRing N = I I V M B D M = I M I

Proof

Step Hyp Ref Expression
1 mdetdiag.d D = N maDet R
2 mdetdiag.a A = N Mat R
3 mdetdiag.b B = Base A
4 eqid Base SymGrp N = Base SymGrp N
5 eqid ℤRHom R = ℤRHom R
6 eqid pmSgn N = pmSgn N
7 eqid R = R
8 eqid mulGrp R = mulGrp R
9 1 2 3 4 5 6 7 8 mdetleib M B D M = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x M x
10 9 3ad2ant3 R CRing N = I I V M B D M = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x M x
11 2fveq3 N = I Base SymGrp N = Base SymGrp I
12 11 adantr N = I I V Base SymGrp N = Base SymGrp I
13 12 3ad2ant2 R CRing N = I I V M B Base SymGrp N = Base SymGrp I
14 simp2r R CRing N = I I V M B I V
15 eqid SymGrp I = SymGrp I
16 eqid Base SymGrp I = Base SymGrp I
17 eqid I = I
18 15 16 17 symg1bas I V Base SymGrp I = I I
19 14 18 syl R CRing N = I I V M B Base SymGrp I = I I
20 13 19 eqtrd R CRing N = I I V M B Base SymGrp N = I I
21 20 mpteq1d R CRing N = I I V M B p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x M x = p I I ℤRHom R pmSgn N p R mulGrp R x N p x M x
22 snex I I V
23 22 a1i R CRing N = I I V M B I I V
24 ovex ℤRHom R pmSgn N I I R mulGrp R x N I I x M x V
25 fveq2 p = I I ℤRHom R pmSgn N p = ℤRHom R pmSgn N I I
26 fveq1 p = I I p x = I I x
27 26 oveq1d p = I I p x M x = I I x M x
28 27 mpteq2dv p = I I x N p x M x = x N I I x M x
29 28 oveq2d p = I I mulGrp R x N p x M x = mulGrp R x N I I x M x
30 25 29 oveq12d p = I I ℤRHom R pmSgn N p R mulGrp R x N p x M x = ℤRHom R pmSgn N I I R mulGrp R x N I I x M x
31 30 fmptsng I I V ℤRHom R pmSgn N I I R mulGrp R x N I I x M x V I I ℤRHom R pmSgn N I I R mulGrp R x N I I x M x = p I I ℤRHom R pmSgn N p R mulGrp R x N p x M x
32 31 eqcomd I I V ℤRHom R pmSgn N I I R mulGrp R x N I I x M x V p I I ℤRHom R pmSgn N p R mulGrp R x N p x M x = I I ℤRHom R pmSgn N I I R mulGrp R x N I I x M x
33 23 24 32 sylancl R CRing N = I I V M B p I I ℤRHom R pmSgn N p R mulGrp R x N p x M x = I I ℤRHom R pmSgn N I I R mulGrp R x N I I x M x
34 eqid SymGrp N = SymGrp N
35 eqid b Base SymGrp N | dom b I Fin = b Base SymGrp N | dom b I Fin
36 34 4 35 6 psgnfn pmSgn N Fn b Base SymGrp N | dom b I Fin
37 18 adantl N = I I V Base SymGrp I = I I
38 12 37 eqtrd N = I I V Base SymGrp N = I I
39 38 3ad2ant2 R CRing N = I I V M B Base SymGrp N = I I
40 rabeq Base SymGrp N = I I b Base SymGrp N | dom b I Fin = b I I | dom b I Fin
41 39 40 syl R CRing N = I I V M B b Base SymGrp N | dom b I Fin = b I I | dom b I Fin
42 difeq1 b = I I b I = I I I
43 42 dmeqd b = I I dom b I = dom I I I
44 43 eleq1d b = I I dom b I Fin dom I I I Fin
45 44 rabsnif b I I | dom b I Fin = if dom I I I Fin I I
46 45 a1i R CRing N = I I V M B b I I | dom b I Fin = if dom I I I Fin I I
47 restidsing I I = I × I
48 xpsng I V I V I × I = I I
49 48 anidms I V I × I = I I
50 47 49 eqtr2id I V I I = I I
51 fnsng I V I V I I Fn I
52 51 anidms I V I I Fn I
53 fnnfpeq0 I I Fn I dom I I I = I I = I I
54 52 53 syl I V dom I I I = I I = I I
55 50 54 mpbird I V dom I I I =
56 0fin Fin
57 55 56 eqeltrdi I V dom I I I Fin
58 57 adantl N = I I V dom I I I Fin
59 58 3ad2ant2 R CRing N = I I V M B dom I I I Fin
60 59 iftrued R CRing N = I I V M B if dom I I I Fin I I = I I
61 41 46 60 3eqtrrd R CRing N = I I V M B I I = b Base SymGrp N | dom b I Fin
62 61 fneq2d R CRing N = I I V M B pmSgn N Fn I I pmSgn N Fn b Base SymGrp N | dom b I Fin
63 36 62 mpbiri R CRing N = I I V M B pmSgn N Fn I I
64 22 snid I I I I
65 fvco2 pmSgn N Fn I I I I I I ℤRHom R pmSgn N I I = ℤRHom R pmSgn N I I
66 63 64 65 sylancl R CRing N = I I V M B ℤRHom R pmSgn N I I = ℤRHom R pmSgn N I I
67 fveq2 N = I pmSgn N = pmSgn I
68 67 adantr N = I I V pmSgn N = pmSgn I
69 68 3ad2ant2 R CRing N = I I V M B pmSgn N = pmSgn I
70 69 fveq1d R CRing N = I I V M B pmSgn N I I = pmSgn I I I
71 snidg I I V I I I I
72 22 71 mp1i I V I I I I
73 72 18 eleqtrrd I V I I Base SymGrp I
74 73 ancli I V I V I I Base SymGrp I
75 74 adantl N = I I V I V I I Base SymGrp I
76 75 3ad2ant2 R CRing N = I I V M B I V I I Base SymGrp I
77 eqid pmSgn I = pmSgn I
78 17 15 16 77 psgnsn I V I I Base SymGrp I pmSgn I I I = 1
79 76 78 syl R CRing N = I I V M B pmSgn I I I = 1
80 70 79 eqtrd R CRing N = I I V M B pmSgn N I I = 1
81 80 fveq2d R CRing N = I I V M B ℤRHom R pmSgn N I I = ℤRHom R 1
82 crngring R CRing R Ring
83 82 3ad2ant1 R CRing N = I I V M B R Ring
84 eqid 1 R = 1 R
85 5 84 zrh1 R Ring ℤRHom R 1 = 1 R
86 83 85 syl R CRing N = I I V M B ℤRHom R 1 = 1 R
87 66 81 86 3eqtrd R CRing N = I I V M B ℤRHom R pmSgn N I I = 1 R
88 simp2l R CRing N = I I V M B N = I
89 88 mpteq1d R CRing N = I I V M B x N I I x M x = x I I I x M x
90 89 oveq2d R CRing N = I I V M B mulGrp R x N I I x M x = mulGrp R x I I I x M x
91 8 ringmgp R Ring mulGrp R Mnd
92 82 91 syl R CRing mulGrp R Mnd
93 92 3ad2ant1 R CRing N = I I V M B mulGrp R Mnd
94 snidg I V I I
95 94 adantl N = I I V I I
96 eleq2 N = I I N I I
97 96 adantr N = I I V I N I I
98 95 97 mpbird N = I I V I N
99 3 eleq2i M B M Base A
100 99 biimpi M B M Base A
101 simpl I N M Base A I N
102 simpr I N M Base A M Base A
103 101 101 102 3jca I N M Base A I N I N M Base A
104 98 100 103 syl2an N = I I V M B I N I N M Base A
105 104 3adant1 R CRing N = I I V M B I N I N M Base A
106 eqid Base R = Base R
107 2 106 matecl I N I N M Base A I M I Base R
108 105 107 syl R CRing N = I I V M B I M I Base R
109 8 106 mgpbas Base R = Base mulGrp R
110 108 109 eleqtrdi R CRing N = I I V M B I M I Base mulGrp R
111 eqid Base mulGrp R = Base mulGrp R
112 fveq2 x = I I I x = I I I
113 eqvisset x = I I V
114 fvsng I V I V I I I = I
115 113 113 114 syl2anc x = I I I I = I
116 112 115 eqtrd x = I I I x = I
117 id x = I x = I
118 116 117 oveq12d x = I I I x M x = I M I
119 111 118 gsumsn mulGrp R Mnd I V I M I Base mulGrp R mulGrp R x I I I x M x = I M I
120 93 14 110 119 syl3anc R CRing N = I I V M B mulGrp R x I I I x M x = I M I
121 90 120 eqtrd R CRing N = I I V M B mulGrp R x N I I x M x = I M I
122 87 121 oveq12d R CRing N = I I V M B ℤRHom R pmSgn N I I R mulGrp R x N I I x M x = 1 R R I M I
123 98 3ad2ant2 R CRing N = I I V M B I N
124 100 3ad2ant3 R CRing N = I I V M B M Base A
125 123 123 124 107 syl3anc R CRing N = I I V M B I M I Base R
126 106 7 84 ringlidm R Ring I M I Base R 1 R R I M I = I M I
127 83 125 126 syl2anc R CRing N = I I V M B 1 R R I M I = I M I
128 122 127 eqtrd R CRing N = I I V M B ℤRHom R pmSgn N I I R mulGrp R x N I I x M x = I M I
129 128 opeq2d R CRing N = I I V M B I I ℤRHom R pmSgn N I I R mulGrp R x N I I x M x = I I I M I
130 129 sneqd R CRing N = I I V M B I I ℤRHom R pmSgn N I I R mulGrp R x N I I x M x = I I I M I
131 ovex I M I V
132 eqidd y = I I I M I = I M I
133 132 fmptsng I I V I M I V I I I M I = y I I I M I
134 23 131 133 sylancl R CRing N = I I V M B I I I M I = y I I I M I
135 130 134 eqtrd R CRing N = I I V M B I I ℤRHom R pmSgn N I I R mulGrp R x N I I x M x = y I I I M I
136 21 33 135 3eqtrd R CRing N = I I V M B p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x M x = y I I I M I
137 136 oveq2d R CRing N = I I V M B R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x M x = R y I I I M I
138 ringmnd R Ring R Mnd
139 82 138 syl R CRing R Mnd
140 139 3ad2ant1 R CRing N = I I V M B R Mnd
141 106 132 gsumsn R Mnd I I V I M I Base R R y I I I M I = I M I
142 140 23 125 141 syl3anc R CRing N = I I V M B R y I I I M I = I M I
143 10 137 142 3eqtrd R CRing N = I I V M B D M = I M I