Step |
Hyp |
Ref |
Expression |
1 |
|
mdetdiag.d |
|
2 |
|
mdetdiag.a |
|
3 |
|
mdetdiag.b |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 2 3 4 5 6 7 8
|
mdetleib |
|
10 |
9
|
3ad2ant3 |
|
11 |
|
2fveq3 |
|
12 |
11
|
adantr |
|
13 |
12
|
3ad2ant2 |
|
14 |
|
simp2r |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
15 16 17
|
symg1bas |
|
19 |
14 18
|
syl |
|
20 |
13 19
|
eqtrd |
|
21 |
20
|
mpteq1d |
|
22 |
|
snex |
|
23 |
22
|
a1i |
|
24 |
|
ovex |
|
25 |
|
fveq2 |
|
26 |
|
fveq1 |
|
27 |
26
|
oveq1d |
|
28 |
27
|
mpteq2dv |
|
29 |
28
|
oveq2d |
|
30 |
25 29
|
oveq12d |
|
31 |
30
|
fmptsng |
|
32 |
31
|
eqcomd |
|
33 |
23 24 32
|
sylancl |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
34 4 35 6
|
psgnfn |
|
37 |
18
|
adantl |
|
38 |
12 37
|
eqtrd |
|
39 |
38
|
3ad2ant2 |
|
40 |
|
rabeq |
|
41 |
39 40
|
syl |
|
42 |
|
difeq1 |
|
43 |
42
|
dmeqd |
|
44 |
43
|
eleq1d |
|
45 |
44
|
rabsnif |
|
46 |
45
|
a1i |
|
47 |
|
restidsing |
|
48 |
|
xpsng |
|
49 |
48
|
anidms |
|
50 |
47 49
|
eqtr2id |
|
51 |
|
fnsng |
|
52 |
51
|
anidms |
|
53 |
|
fnnfpeq0 |
|
54 |
52 53
|
syl |
|
55 |
50 54
|
mpbird |
|
56 |
|
0fin |
|
57 |
55 56
|
eqeltrdi |
|
58 |
57
|
adantl |
|
59 |
58
|
3ad2ant2 |
|
60 |
59
|
iftrued |
|
61 |
41 46 60
|
3eqtrrd |
|
62 |
61
|
fneq2d |
|
63 |
36 62
|
mpbiri |
|
64 |
22
|
snid |
|
65 |
|
fvco2 |
|
66 |
63 64 65
|
sylancl |
|
67 |
|
fveq2 |
|
68 |
67
|
adantr |
|
69 |
68
|
3ad2ant2 |
|
70 |
69
|
fveq1d |
|
71 |
|
snidg |
|
72 |
22 71
|
mp1i |
|
73 |
72 18
|
eleqtrrd |
|
74 |
73
|
ancli |
|
75 |
74
|
adantl |
|
76 |
75
|
3ad2ant2 |
|
77 |
|
eqid |
|
78 |
17 15 16 77
|
psgnsn |
|
79 |
76 78
|
syl |
|
80 |
70 79
|
eqtrd |
|
81 |
80
|
fveq2d |
|
82 |
|
crngring |
|
83 |
82
|
3ad2ant1 |
|
84 |
|
eqid |
|
85 |
5 84
|
zrh1 |
|
86 |
83 85
|
syl |
|
87 |
66 81 86
|
3eqtrd |
|
88 |
|
simp2l |
|
89 |
88
|
mpteq1d |
|
90 |
89
|
oveq2d |
|
91 |
8
|
ringmgp |
|
92 |
82 91
|
syl |
|
93 |
92
|
3ad2ant1 |
|
94 |
|
snidg |
|
95 |
94
|
adantl |
|
96 |
|
eleq2 |
|
97 |
96
|
adantr |
|
98 |
95 97
|
mpbird |
|
99 |
3
|
eleq2i |
|
100 |
99
|
biimpi |
|
101 |
|
simpl |
|
102 |
|
simpr |
|
103 |
101 101 102
|
3jca |
|
104 |
98 100 103
|
syl2an |
|
105 |
104
|
3adant1 |
|
106 |
|
eqid |
|
107 |
2 106
|
matecl |
|
108 |
105 107
|
syl |
|
109 |
8 106
|
mgpbas |
|
110 |
108 109
|
eleqtrdi |
|
111 |
|
eqid |
|
112 |
|
fveq2 |
|
113 |
|
eqvisset |
|
114 |
|
fvsng |
|
115 |
113 113 114
|
syl2anc |
|
116 |
112 115
|
eqtrd |
|
117 |
|
id |
|
118 |
116 117
|
oveq12d |
|
119 |
111 118
|
gsumsn |
|
120 |
93 14 110 119
|
syl3anc |
|
121 |
90 120
|
eqtrd |
|
122 |
87 121
|
oveq12d |
|
123 |
98
|
3ad2ant2 |
|
124 |
100
|
3ad2ant3 |
|
125 |
123 123 124 107
|
syl3anc |
|
126 |
106 7 84
|
ringlidm |
|
127 |
83 125 126
|
syl2anc |
|
128 |
122 127
|
eqtrd |
|
129 |
128
|
opeq2d |
|
130 |
129
|
sneqd |
|
131 |
|
ovex |
|
132 |
|
eqidd |
|
133 |
132
|
fmptsng |
|
134 |
23 131 133
|
sylancl |
|
135 |
130 134
|
eqtrd |
|
136 |
21 33 135
|
3eqtrd |
|
137 |
136
|
oveq2d |
|
138 |
|
ringmnd |
|
139 |
82 138
|
syl |
|
140 |
139
|
3ad2ant1 |
|
141 |
106 132
|
gsumsn |
|
142 |
140 23 125 141
|
syl3anc |
|
143 |
10 137 142
|
3eqtrd |
|