Metamath Proof Explorer


Theorem m1dvdsndvds

Description: If an integer minus 1 is divisible by a prime number, the integer itself is not divisible by this prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018)

Ref Expression
Assertion m1dvdsndvds P A P A 1 ¬ P A

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 1 neii ¬ 1 = 0
3 eqeq1 1 = A mod P 1 = 0 A mod P = 0
4 3 eqcoms A mod P = 1 1 = 0 A mod P = 0
5 2 4 mtbii A mod P = 1 ¬ A mod P = 0
6 5 a1i P A A mod P = 1 ¬ A mod P = 0
7 modprm1div P A A mod P = 1 P A 1
8 prmnn P P
9 dvdsval3 P A P A A mod P = 0
10 8 9 sylan P A P A A mod P = 0
11 10 bicomd P A A mod P = 0 P A
12 11 notbid P A ¬ A mod P = 0 ¬ P A
13 6 7 12 3imtr3d P A P A 1 ¬ P A