Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
|
divides |
|
3 |
1 2
|
mpan |
|
4 |
|
oveq2 |
|
5 |
4
|
eqcoms |
|
6 |
|
zcn |
|
7 |
|
2cnd |
|
8 |
6 7
|
mulcomd |
|
9 |
8
|
oveq2d |
|
10 |
|
m1expeven |
|
11 |
9 10
|
eqtrd |
|
12 |
5 11
|
sylan9eqr |
|
13 |
12
|
rexlimiva |
|
14 |
3 13
|
syl6bi |
|
15 |
14
|
impcom |
|
16 |
|
simpl |
|
17 |
15 16
|
2thd |
|
18 |
|
ax-1ne0 |
|
19 |
|
eqcom |
|
20 |
|
ax-1cn |
|
21 |
20
|
eqnegi |
|
22 |
19 21
|
bitri |
|
23 |
18 22
|
nemtbir |
|
24 |
|
odd2np1 |
|
25 |
|
oveq2 |
|
26 |
25
|
eqcoms |
|
27 |
|
neg1cn |
|
28 |
27
|
a1i |
|
29 |
|
neg1ne0 |
|
30 |
29
|
a1i |
|
31 |
1
|
a1i |
|
32 |
|
id |
|
33 |
31 32
|
zmulcld |
|
34 |
28 30 33
|
expp1zd |
|
35 |
10
|
oveq1d |
|
36 |
27
|
mulid2i |
|
37 |
35 36
|
eqtrdi |
|
38 |
34 37
|
eqtrd |
|
39 |
26 38
|
sylan9eqr |
|
40 |
39
|
rexlimiva |
|
41 |
24 40
|
syl6bi |
|
42 |
41
|
impcom |
|
43 |
42
|
eqeq1d |
|
44 |
23 43
|
mtbiri |
|
45 |
|
simpl |
|
46 |
44 45
|
2falsed |
|
47 |
17 46
|
pm2.61ian |
|