Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
m1expcl
Next ⟩
expclzlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
m1expcl
Description:
Closure of exponentiation of negative one.
(Contributed by
Mario Carneiro
, 18-Jun-2015)
Ref
Expression
Assertion
m1expcl
⊢
N
∈
ℤ
→
−
1
N
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
neg1z
⊢
−
1
∈
ℤ
2
1z
⊢
1
∈
ℤ
3
prssi
⊢
−
1
∈
ℤ
∧
1
∈
ℤ
→
−
1
1
⊆
ℤ
4
1
2
3
mp2an
⊢
−
1
1
⊆
ℤ
5
m1expcl2
⊢
N
∈
ℤ
→
−
1
N
∈
−
1
1
6
4
5
sselid
⊢
N
∈
ℤ
→
−
1
N
∈
ℤ