Metamath Proof Explorer


Theorem m1expcl2

Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion m1expcl2 N 1 N 1 1

Proof

Step Hyp Ref Expression
1 negex 1 V
2 1 prid1 1 1 1
3 neg1ne0 1 0
4 neg1cn 1
5 ax-1cn 1
6 prssi 1 1 1 1
7 4 5 6 mp2an 1 1
8 elpri x 1 1 x = 1 x = 1
9 7 sseli y 1 1 y
10 9 mulm1d y 1 1 -1 y = y
11 elpri y 1 1 y = 1 y = 1
12 negeq y = 1 y = -1
13 negneg1e1 -1 = 1
14 1ex 1 V
15 14 prid2 1 1 1
16 13 15 eqeltri -1 1 1
17 12 16 eqeltrdi y = 1 y 1 1
18 negeq y = 1 y = 1
19 18 2 eqeltrdi y = 1 y 1 1
20 17 19 jaoi y = 1 y = 1 y 1 1
21 11 20 syl y 1 1 y 1 1
22 10 21 eqeltrd y 1 1 -1 y 1 1
23 oveq1 x = 1 x y = -1 y
24 23 eleq1d x = 1 x y 1 1 -1 y 1 1
25 22 24 syl5ibr x = 1 y 1 1 x y 1 1
26 9 mulid2d y 1 1 1 y = y
27 id y 1 1 y 1 1
28 26 27 eqeltrd y 1 1 1 y 1 1
29 oveq1 x = 1 x y = 1 y
30 29 eleq1d x = 1 x y 1 1 1 y 1 1
31 28 30 syl5ibr x = 1 y 1 1 x y 1 1
32 25 31 jaoi x = 1 x = 1 y 1 1 x y 1 1
33 8 32 syl x 1 1 y 1 1 x y 1 1
34 33 imp x 1 1 y 1 1 x y 1 1
35 oveq2 x = 1 1 x = 1 1
36 ax-1ne0 1 0
37 divneg2 1 1 1 0 1 1 = 1 1
38 5 5 36 37 mp3an 1 1 = 1 1
39 1div1e1 1 1 = 1
40 39 negeqi 1 1 = 1
41 38 40 eqtr3i 1 1 = 1
42 41 2 eqeltri 1 1 1 1
43 35 42 eqeltrdi x = 1 1 x 1 1
44 oveq2 x = 1 1 x = 1 1
45 39 15 eqeltri 1 1 1 1
46 44 45 eqeltrdi x = 1 1 x 1 1
47 43 46 jaoi x = 1 x = 1 1 x 1 1
48 8 47 syl x 1 1 1 x 1 1
49 48 adantr x 1 1 x 0 1 x 1 1
50 7 34 15 49 expcl2lem 1 1 1 1 0 N 1 N 1 1
51 2 3 50 mp3an12 N 1 N 1 1