Metamath Proof Explorer


Theorem m1expeven

Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018)

Ref Expression
Assertion m1expeven N 1 2 N = 1

Proof

Step Hyp Ref Expression
1 zcn N N
2 1 2timesd N 2 N = N + N
3 2 oveq2d N 1 2 N = 1 N + N
4 neg1cn 1
5 neg1ne0 1 0
6 expaddz 1 1 0 N N 1 N + N = 1 N 1 N
7 4 5 6 mpanl12 N N 1 N + N = 1 N 1 N
8 7 anidms N 1 N + N = 1 N 1 N
9 m1expcl2 N 1 N 1 1
10 ovex 1 N V
11 10 elpr 1 N 1 1 1 N = 1 1 N = 1
12 oveq12 1 N = 1 1 N = 1 1 N 1 N = -1 -1
13 12 anidms 1 N = 1 1 N 1 N = -1 -1
14 neg1mulneg1e1 -1 -1 = 1
15 13 14 eqtrdi 1 N = 1 1 N 1 N = 1
16 oveq12 1 N = 1 1 N = 1 1 N 1 N = 1 1
17 16 anidms 1 N = 1 1 N 1 N = 1 1
18 1t1e1 1 1 = 1
19 17 18 eqtrdi 1 N = 1 1 N 1 N = 1
20 15 19 jaoi 1 N = 1 1 N = 1 1 N 1 N = 1
21 11 20 sylbi 1 N 1 1 1 N 1 N = 1
22 9 21 syl N 1 N 1 N = 1
23 3 8 22 3eqtrd N 1 2 N = 1