Metamath Proof Explorer


Theorem m1expevenALTV

Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 6-Jul-2020)

Ref Expression
Assertion m1expevenALTV N Even 1 N = 1

Proof

Step Hyp Ref Expression
1 eqeq1 n = N n = 2 i N = 2 i
2 1 rexbidv n = N i n = 2 i i N = 2 i
3 dfeven4 Even = n | i n = 2 i
4 2 3 elrab2 N Even N i N = 2 i
5 oveq2 N = 2 i 1 N = 1 2 i
6 neg1cn 1
7 6 a1i i 1
8 neg1ne0 1 0
9 8 a1i i 1 0
10 2z 2
11 10 a1i i 2
12 id i i
13 expmulz 1 1 0 2 i 1 2 i = -1 2 i
14 7 9 11 12 13 syl22anc i 1 2 i = -1 2 i
15 neg1sqe1 1 2 = 1
16 15 oveq1i -1 2 i = 1 i
17 1exp i 1 i = 1
18 16 17 syl5eq i -1 2 i = 1
19 14 18 eqtrd i 1 2 i = 1
20 19 adantl N i 1 2 i = 1
21 5 20 sylan9eqr N i N = 2 i 1 N = 1
22 21 rexlimdva2 N i N = 2 i 1 N = 1
23 22 imp N i N = 2 i 1 N = 1
24 4 23 sylbi N Even 1 N = 1