Metamath Proof Explorer


Theorem m1expoddALTV

Description: Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020)

Ref Expression
Assertion m1expoddALTV N Odd 1 N = 1

Proof

Step Hyp Ref Expression
1 oddz N Odd N
2 1 zcnd N Odd N
3 npcan1 N N - 1 + 1 = N
4 3 eqcomd N N = N - 1 + 1
5 2 4 syl N Odd N = N - 1 + 1
6 5 oveq2d N Odd 1 N = 1 N - 1 + 1
7 neg1cn 1
8 7 a1i N Odd 1
9 neg1ne0 1 0
10 9 a1i N Odd 1 0
11 peano2zm N N 1
12 1 11 syl N Odd N 1
13 8 10 12 expp1zd N Odd 1 N - 1 + 1 = 1 N 1 -1
14 oddm1eveni N Odd N 1 Even
15 m1expevenALTV N 1 Even 1 N 1 = 1
16 14 15 syl N Odd 1 N 1 = 1
17 16 oveq1d N Odd 1 N 1 -1 = 1 -1
18 8 mulid2d N Odd 1 -1 = 1
19 17 18 eqtrd N Odd 1 N 1 -1 = 1
20 6 13 19 3eqtrd N Odd 1 N = 1