Metamath Proof Explorer


Theorem m1m1sr

Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion m1m1sr -1 𝑹 𝑹 -1 𝑹 = 1 𝑹

Proof

Step Hyp Ref Expression
1 df-m1r -1 𝑹 = 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹
2 1 1 oveq12i -1 𝑹 𝑹 -1 𝑹 = 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹
3 df-1r 1 𝑹 = 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹
4 1pr 1 𝑷 𝑷
5 addclpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
6 4 4 5 mp2an 1 𝑷 + 𝑷 1 𝑷 𝑷
7 mulsrpr 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 = 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 ~ 𝑹
8 4 6 4 6 7 mp4an 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 = 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 ~ 𝑹
9 addasspr 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
10 1idpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 = 1 𝑷
11 4 10 ax-mp 1 𝑷 𝑷 1 𝑷 = 1 𝑷
12 distrpr 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
13 mulcompr 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
14 13 oveq1i 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
15 12 14 eqtr4i 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 = 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
16 11 15 oveq12i 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
17 16 oveq2i 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷
18 9 17 eqtr4i 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷
19 mulclpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 𝑷
20 4 4 19 mp2an 1 𝑷 𝑷 1 𝑷 𝑷
21 mulclpr 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
22 6 6 21 mp2an 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
23 addclpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
24 20 22 23 mp2an 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
25 mulclpr 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
26 4 6 25 mp2an 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
27 mulclpr 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷
28 6 4 27 mp2an 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷
29 addclpr 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷
30 26 28 29 mp2an 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷
31 enreceq 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹 = 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 ~ 𝑹 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷
32 6 4 24 30 31 mp4an 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹 = 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 ~ 𝑹 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷
33 18 32 mpbir 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹 = 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 ~ 𝑹
34 8 33 eqtr4i 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 = 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹
35 3 34 eqtr4i 1 𝑹 = 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹
36 2 35 eqtr4i -1 𝑹 𝑹 -1 𝑹 = 1 𝑹