Metamath Proof Explorer


Theorem m1modge3gt1

Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion m1modge3gt1 M 3 1 < -1 mod M

Proof

Step Hyp Ref Expression
1 1p1e2 1 + 1 = 2
2 2p1e3 2 + 1 = 3
3 eluzle M 3 3 M
4 2 3 eqbrtrid M 3 2 + 1 M
5 2z 2
6 eluzelz M 3 M
7 zltp1le 2 M 2 < M 2 + 1 M
8 5 6 7 sylancr M 3 2 < M 2 + 1 M
9 4 8 mpbird M 3 2 < M
10 1 9 eqbrtrid M 3 1 + 1 < M
11 1red M 3 1
12 eluzelre M 3 M
13 11 11 12 ltaddsub2d M 3 1 + 1 < M 1 < M 1
14 10 13 mpbid M 3 1 < M 1
15 eluzge3nn M 3 M
16 m1modnnsub1 M -1 mod M = M 1
17 15 16 syl M 3 -1 mod M = M 1
18 14 17 breqtrrd M 3 1 < -1 mod M