Step |
Hyp |
Ref |
Expression |
1 |
|
m1pmeq.p |
|
2 |
|
m1pmeq.m |
|
3 |
|
m1pmeq.u |
|
4 |
|
m1pmeq.t |
|
5 |
|
m1pmeq.r |
|
6 |
|
m1pmeq.f |
|
7 |
|
m1pmeq.g |
|
8 |
|
m1pmeq.h |
|
9 |
|
m1pmeq.1 |
|
10 |
5
|
flddrngd |
|
11 |
10
|
drngringd |
|
12 |
|
eqid |
|
13 |
12 3
|
unitcl |
|
14 |
8 13
|
syl |
|
15 |
8 3
|
eleqtrdi |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
1 16 17 18 5 19 14
|
ply1unit |
|
21 |
15 20
|
mpbid |
|
22 |
|
0le0 |
|
23 |
21 22
|
eqbrtrdi |
|
24 |
19 1 12 16
|
deg1le0 |
|
25 |
24
|
biimpa |
|
26 |
11 14 23 25
|
syl21anc |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
21
|
fveq2d |
|
30 |
|
0nn0 |
|
31 |
21 30
|
eqeltrdi |
|
32 |
|
eqid |
|
33 |
32 12 1 17
|
coe1fvalcl |
|
34 |
14 31 33
|
syl2anc |
|
35 |
29 34
|
eqeltrrd |
|
36 |
17 27 28 11 35
|
ringridmd |
|
37 |
9
|
fveq2d |
|
38 |
9
|
fveq2d |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
drngnzr |
|
42 |
10 41
|
syl |
|
43 |
1
|
ply1nz |
|
44 |
42 43
|
syl |
|
45 |
3 40 44 8
|
unitnz |
|
46 |
|
fldidom |
|
47 |
5 46
|
syl |
|
48 |
47
|
idomdomd |
|
49 |
19 1 18 12 40 11 14 23
|
deg1le0eq0 |
|
50 |
49
|
necon3bid |
|
51 |
45 50
|
mpbid |
|
52 |
29 51
|
eqnetrd |
|
53 |
17 39 18
|
domnrrg |
|
54 |
48 34 52 53
|
syl3anc |
|
55 |
1 12 2
|
mon1pcl |
|
56 |
7 55
|
syl |
|
57 |
1 40 2
|
mon1pn0 |
|
58 |
7 57
|
syl |
|
59 |
19 1 39 12 4 40 11 14 45 54 56 58
|
deg1mul2 |
|
60 |
38 59
|
eqtrd |
|
61 |
37 60
|
fveq12d |
|
62 |
19 28 2
|
mon1pldg |
|
63 |
6 62
|
syl |
|
64 |
1 4 27 12 19 40 11 14 45 56 58
|
coe1mul4 |
|
65 |
19 28 2
|
mon1pldg |
|
66 |
7 65
|
syl |
|
67 |
29 66
|
oveq12d |
|
68 |
64 67
|
eqtrd |
|
69 |
61 63 68
|
3eqtr3rd |
|
70 |
36 69
|
eqtr3d |
|
71 |
70
|
fveq2d |
|
72 |
|
eqid |
|
73 |
1 16 28 72 11
|
ply1ascl1 |
|
74 |
26 71 73
|
3eqtrd |
|
75 |
74
|
oveq1d |
|
76 |
1
|
ply1ring |
|
77 |
11 76
|
syl |
|
78 |
12 4 72 77 56
|
ringlidmd |
|
79 |
9 75 78
|
3eqtrd |
|