Metamath Proof Explorer


Theorem m1r

Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion m1r -1 𝑹 𝑹

Proof

Step Hyp Ref Expression
1 1pr 1 𝑷 𝑷
2 addclpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
3 1 1 2 mp2an 1 𝑷 + 𝑷 1 𝑷 𝑷
4 opelxpi 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 × 𝑷
5 1 3 4 mp2an 1 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 × 𝑷
6 enrex ~ 𝑹 V
7 6 ecelqsi 1 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷 × 𝑷 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
8 5 7 ax-mp 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
9 df-m1r -1 𝑹 = 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹
10 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
11 8 9 10 3eltr4i -1 𝑹 𝑹