| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpm.s |
|
| 2 |
|
m2cpm.t |
|
| 3 |
|
m2cpm.a |
|
| 4 |
|
m2cpm.b |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
2 3 4 5 6
|
mat2pmatvalel |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
fveq2d |
|
| 10 |
9
|
fveq1d |
|
| 11 |
|
simpl2 |
|
| 12 |
|
eqid |
|
| 13 |
|
simprl |
|
| 14 |
|
simprr |
|
| 15 |
|
simpl3 |
|
| 16 |
3 12 4 13 14 15
|
matecld |
|
| 17 |
11 16
|
jca |
|
| 18 |
17
|
adantr |
|
| 19 |
|
eqid |
|
| 20 |
5 6 12 19
|
coe1scl |
|
| 21 |
18 20
|
syl |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
ifbid |
|
| 24 |
23
|
adantl |
|
| 25 |
|
nnnn0 |
|
| 26 |
25
|
adantl |
|
| 27 |
|
ovex |
|
| 28 |
|
fvex |
|
| 29 |
27 28
|
ifex |
|
| 30 |
29
|
a1i |
|
| 31 |
21 24 26 30
|
fvmptd |
|
| 32 |
|
nnne0 |
|
| 33 |
32
|
neneqd |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
iffalsed |
|
| 36 |
10 31 35
|
3eqtrd |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
37
|
ralrimivva |
|
| 39 |
|
eqid |
|
| 40 |
2 3 4 5 39
|
mat2pmatbas |
|
| 41 |
|
eqid |
|
| 42 |
1 5 39 41
|
cpmatel |
|
| 43 |
40 42
|
syld3an3 |
|
| 44 |
38 43
|
mpbird |
|