Metamath Proof Explorer


Theorem m2cpm

Description: The result of a matrix transformation is a constant polynomial matrix. (Contributed by AV, 18-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S = N ConstPolyMat R
m2cpm.t T = N matToPolyMat R
m2cpm.a A = N Mat R
m2cpm.b B = Base A
Assertion m2cpm N Fin R Ring M B T M S

Proof

Step Hyp Ref Expression
1 m2cpm.s S = N ConstPolyMat R
2 m2cpm.t T = N matToPolyMat R
3 m2cpm.a A = N Mat R
4 m2cpm.b B = Base A
5 eqid Poly 1 R = Poly 1 R
6 eqid algSc Poly 1 R = algSc Poly 1 R
7 2 3 4 5 6 mat2pmatvalel N Fin R Ring M B i N j N i T M j = algSc Poly 1 R i M j
8 7 adantr N Fin R Ring M B i N j N n i T M j = algSc Poly 1 R i M j
9 8 fveq2d N Fin R Ring M B i N j N n coe 1 i T M j = coe 1 algSc Poly 1 R i M j
10 9 fveq1d N Fin R Ring M B i N j N n coe 1 i T M j n = coe 1 algSc Poly 1 R i M j n
11 simpl2 N Fin R Ring M B i N j N R Ring
12 eqid Base R = Base R
13 simprl N Fin R Ring M B i N j N i N
14 simprr N Fin R Ring M B i N j N j N
15 simpl3 N Fin R Ring M B i N j N M B
16 3 12 4 13 14 15 matecld N Fin R Ring M B i N j N i M j Base R
17 11 16 jca N Fin R Ring M B i N j N R Ring i M j Base R
18 17 adantr N Fin R Ring M B i N j N n R Ring i M j Base R
19 eqid 0 R = 0 R
20 5 6 12 19 coe1scl R Ring i M j Base R coe 1 algSc Poly 1 R i M j = k 0 if k = 0 i M j 0 R
21 18 20 syl N Fin R Ring M B i N j N n coe 1 algSc Poly 1 R i M j = k 0 if k = 0 i M j 0 R
22 eqeq1 k = n k = 0 n = 0
23 22 ifbid k = n if k = 0 i M j 0 R = if n = 0 i M j 0 R
24 23 adantl N Fin R Ring M B i N j N n k = n if k = 0 i M j 0 R = if n = 0 i M j 0 R
25 nnnn0 n n 0
26 25 adantl N Fin R Ring M B i N j N n n 0
27 ovex i M j V
28 fvex 0 R V
29 27 28 ifex if n = 0 i M j 0 R V
30 29 a1i N Fin R Ring M B i N j N n if n = 0 i M j 0 R V
31 21 24 26 30 fvmptd N Fin R Ring M B i N j N n coe 1 algSc Poly 1 R i M j n = if n = 0 i M j 0 R
32 nnne0 n n 0
33 32 neneqd n ¬ n = 0
34 33 adantl N Fin R Ring M B i N j N n ¬ n = 0
35 34 iffalsed N Fin R Ring M B i N j N n if n = 0 i M j 0 R = 0 R
36 10 31 35 3eqtrd N Fin R Ring M B i N j N n coe 1 i T M j n = 0 R
37 36 ralrimiva N Fin R Ring M B i N j N n coe 1 i T M j n = 0 R
38 37 ralrimivva N Fin R Ring M B i N j N n coe 1 i T M j n = 0 R
39 eqid N Mat Poly 1 R = N Mat Poly 1 R
40 2 3 4 5 39 mat2pmatbas N Fin R Ring M B T M Base N Mat Poly 1 R
41 eqid Base N Mat Poly 1 R = Base N Mat Poly 1 R
42 1 5 39 41 cpmatel N Fin R Ring T M Base N Mat Poly 1 R T M S i N j N n coe 1 i T M j n = 0 R
43 40 42 syld3an3 N Fin R Ring M B T M S i N j N n coe 1 i T M j n = 0 R
44 38 43 mpbird N Fin R Ring M B T M S