Metamath Proof Explorer


Theorem m2cpmf

Description: The matrix transformation is a function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S = N ConstPolyMat R
m2cpm.t T = N matToPolyMat R
m2cpm.a A = N Mat R
m2cpm.b B = Base A
Assertion m2cpmf N Fin R Ring T : B S

Proof

Step Hyp Ref Expression
1 m2cpm.s S = N ConstPolyMat R
2 m2cpm.t T = N matToPolyMat R
3 m2cpm.a A = N Mat R
4 m2cpm.b B = Base A
5 simpl N Fin R Ring N Fin
6 5 5 jca N Fin R Ring N Fin N Fin
7 6 adantr N Fin R Ring m B N Fin N Fin
8 mpoexga N Fin N Fin i N , j N algSc Poly 1 R i m j V
9 7 8 syl N Fin R Ring m B i N , j N algSc Poly 1 R i m j V
10 eqid Poly 1 R = Poly 1 R
11 eqid algSc Poly 1 R = algSc Poly 1 R
12 2 3 4 10 11 mat2pmatfval N Fin R Ring T = m B i N , j N algSc Poly 1 R i m j
13 1 2 3 4 m2cpm N Fin R Ring b B T b S
14 13 3expa N Fin R Ring b B T b S
15 9 12 14 fmpt2d N Fin R Ring T : B S