Metamath Proof Explorer


Theorem m2cpmf1o

Description: The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s S = N ConstPolyMat R
m2cpmfo.t T = N matToPolyMat R
m2cpmfo.a A = N Mat R
m2cpmfo.k K = Base A
Assertion m2cpmf1o N Fin R Ring T : K 1-1 onto S

Proof

Step Hyp Ref Expression
1 m2cpmfo.s S = N ConstPolyMat R
2 m2cpmfo.t T = N matToPolyMat R
3 m2cpmfo.a A = N Mat R
4 m2cpmfo.k K = Base A
5 1 2 3 4 m2cpmf1 N Fin R Ring T : K 1-1 S
6 1 2 3 4 m2cpmfo N Fin R Ring T : K onto S
7 df-f1o T : K 1-1 onto S T : K 1-1 S T : K onto S
8 5 6 7 sylanbrc N Fin R Ring T : K 1-1 onto S