Metamath Proof Explorer


Theorem m2cpmfo

Description: The matrix transformation is a function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s S = N ConstPolyMat R
m2cpmfo.t T = N matToPolyMat R
m2cpmfo.a A = N Mat R
m2cpmfo.k K = Base A
Assertion m2cpmfo N Fin R Ring T : K onto S

Proof

Step Hyp Ref Expression
1 m2cpmfo.s S = N ConstPolyMat R
2 m2cpmfo.t T = N matToPolyMat R
3 m2cpmfo.a A = N Mat R
4 m2cpmfo.k K = Base A
5 1 2 3 4 m2cpmf N Fin R Ring T : K S
6 eqid Base R = Base R
7 simplll N Fin R Ring x S m S N Fin
8 simpllr N Fin R Ring x S m S R Ring
9 eqid N Mat Poly 1 R = N Mat Poly 1 R
10 eqid Base Poly 1 R = Base Poly 1 R
11 eqid Base N Mat Poly 1 R = Base N Mat Poly 1 R
12 simp2 N Fin R Ring x S m S i N j N i N
13 simp3 N Fin R Ring x S m S i N j N j N
14 eqid Poly 1 R = Poly 1 R
15 1 14 9 11 cpmatpmat N Fin R Ring m S m Base N Mat Poly 1 R
16 15 ad4ant124 N Fin R Ring x S m S m Base N Mat Poly 1 R
17 16 3ad2ant1 N Fin R Ring x S m S i N j N m Base N Mat Poly 1 R
18 9 10 11 12 13 17 matecld N Fin R Ring x S m S i N j N i m j Base Poly 1 R
19 0nn0 0 0
20 eqid coe 1 i m j = coe 1 i m j
21 20 10 14 6 coe1fvalcl i m j Base Poly 1 R 0 0 coe 1 i m j 0 Base R
22 18 19 21 sylancl N Fin R Ring x S m S i N j N coe 1 i m j 0 Base R
23 3 6 4 7 8 22 matbas2d N Fin R Ring x S m S i N , j N coe 1 i m j 0 K
24 23 fmpttd N Fin R Ring x S m S i N , j N coe 1 i m j 0 : S K
25 simpr N Fin R Ring x S x S
26 24 25 ffvelrnd N Fin R Ring x S m S i N , j N coe 1 i m j 0 x K
27 fveq2 c = m S i N , j N coe 1 i m j 0 x T c = T m S i N , j N coe 1 i m j 0 x
28 27 eqeq2d c = m S i N , j N coe 1 i m j 0 x x = T c x = T m S i N , j N coe 1 i m j 0 x
29 28 adantl N Fin R Ring x S c = m S i N , j N coe 1 i m j 0 x x = T c x = T m S i N , j N coe 1 i m j 0 x
30 eqid N cPolyMatToMat R = N cPolyMatToMat R
31 30 1 cpm2mfval N Fin R Ring N cPolyMatToMat R = m S i N , j N coe 1 i m j 0
32 31 fveq1d N Fin R Ring N cPolyMatToMat R x = m S i N , j N coe 1 i m j 0 x
33 32 3adant3 N Fin R Ring x S N cPolyMatToMat R x = m S i N , j N coe 1 i m j 0 x
34 33 eqcomd N Fin R Ring x S m S i N , j N coe 1 i m j 0 x = N cPolyMatToMat R x
35 34 fveq2d N Fin R Ring x S T m S i N , j N coe 1 i m j 0 x = T N cPolyMatToMat R x
36 1 30 2 m2cpminvid2 N Fin R Ring x S T N cPolyMatToMat R x = x
37 35 36 eqtrd N Fin R Ring x S T m S i N , j N coe 1 i m j 0 x = x
38 37 3expa N Fin R Ring x S T m S i N , j N coe 1 i m j 0 x = x
39 38 eqcomd N Fin R Ring x S x = T m S i N , j N coe 1 i m j 0 x
40 26 29 39 rspcedvd N Fin R Ring x S c K x = T c
41 40 ralrimiva N Fin R Ring x S c K x = T c
42 dffo3 T : K onto S T : K S x S c K x = T c
43 5 41 42 sylanbrc N Fin R Ring T : K onto S