Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpmfo.s |
|
2 |
|
m2cpmfo.t |
|
3 |
|
m2cpmfo.a |
|
4 |
|
m2cpmfo.k |
|
5 |
1 2 3 4
|
m2cpmf |
|
6 |
|
eqid |
|
7 |
|
simplll |
|
8 |
|
simpllr |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
simp2 |
|
13 |
|
simp3 |
|
14 |
|
eqid |
|
15 |
1 14 9 11
|
cpmatpmat |
|
16 |
15
|
ad4ant124 |
|
17 |
16
|
3ad2ant1 |
|
18 |
9 10 11 12 13 17
|
matecld |
|
19 |
|
0nn0 |
|
20 |
|
eqid |
|
21 |
20 10 14 6
|
coe1fvalcl |
|
22 |
18 19 21
|
sylancl |
|
23 |
3 6 4 7 8 22
|
matbas2d |
|
24 |
23
|
fmpttd |
|
25 |
|
simpr |
|
26 |
24 25
|
ffvelrnd |
|
27 |
|
fveq2 |
|
28 |
27
|
eqeq2d |
|
29 |
28
|
adantl |
|
30 |
|
eqid |
|
31 |
30 1
|
cpm2mfval |
|
32 |
31
|
fveq1d |
|
33 |
32
|
3adant3 |
|
34 |
33
|
eqcomd |
|
35 |
34
|
fveq2d |
|
36 |
1 30 2
|
m2cpminvid2 |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
3expa |
|
39 |
38
|
eqcomd |
|
40 |
26 29 39
|
rspcedvd |
|
41 |
40
|
ralrimiva |
|
42 |
|
dffo3 |
|
43 |
5 41 42
|
sylanbrc |
|