Metamath Proof Explorer


Theorem m2cpmghm

Description: The transformation of matrices into constant polynomial matrices is an additive group homomorphism. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S = N ConstPolyMat R
m2cpm.t T = N matToPolyMat R
m2cpm.a A = N Mat R
m2cpm.b B = Base A
m2cpmghm.p P = Poly 1 R
m2cpmghm.c C = N Mat P
m2cpmghm.u U = C 𝑠 S
Assertion m2cpmghm N Fin R Ring T A GrpHom U

Proof

Step Hyp Ref Expression
1 m2cpm.s S = N ConstPolyMat R
2 m2cpm.t T = N matToPolyMat R
3 m2cpm.a A = N Mat R
4 m2cpm.b B = Base A
5 m2cpmghm.p P = Poly 1 R
6 m2cpmghm.c C = N Mat P
7 m2cpmghm.u U = C 𝑠 S
8 eqid Base C = Base C
9 2 3 4 5 6 8 mat2pmatghm N Fin R Ring T A GrpHom C
10 1 5 6 cpmatsubgpmat N Fin R Ring S SubGrp C
11 1 2 3 4 m2cpmf N Fin R Ring T : B S
12 11 frnd N Fin R Ring ran T S
13 7 resghm2b S SubGrp C ran T S T A GrpHom C T A GrpHom U
14 13 bicomd S SubGrp C ran T S T A GrpHom U T A GrpHom C
15 10 12 14 syl2anc N Fin R Ring T A GrpHom U T A GrpHom C
16 9 15 mpbird N Fin R Ring T A GrpHom U