Metamath Proof Explorer


Theorem m2cpminv0

Description: The inverse matrix transformation applied to the zero polynomial matrix results in the zero of the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses m2cpminv0.a A = N Mat R
m2cpminv0.i I = N cPolyMatToMat R
m2cpminv0.p P = Poly 1 R
m2cpminv0.c C = N Mat P
m2cpminv0.0 0 ˙ = 0 A
m2cpminv0.z Z = 0 C
Assertion m2cpminv0 N Fin R Ring I Z = 0 ˙

Proof

Step Hyp Ref Expression
1 m2cpminv0.a A = N Mat R
2 m2cpminv0.i I = N cPolyMatToMat R
3 m2cpminv0.p P = Poly 1 R
4 m2cpminv0.c C = N Mat P
5 m2cpminv0.0 0 ˙ = 0 A
6 m2cpminv0.z Z = 0 C
7 eqid N matToPolyMat R = N matToPolyMat R
8 1 fveq2i 0 A = 0 N Mat R
9 5 8 eqtri 0 ˙ = 0 N Mat R
10 4 fveq2i 0 C = 0 N Mat P
11 6 10 eqtri Z = 0 N Mat P
12 7 3 9 11 0mat2pmat R Ring N Fin N matToPolyMat R 0 ˙ = Z
13 12 ancoms N Fin R Ring N matToPolyMat R 0 ˙ = Z
14 13 eqcomd N Fin R Ring Z = N matToPolyMat R 0 ˙
15 14 fveq2d N Fin R Ring I Z = I N matToPolyMat R 0 ˙
16 1 matring N Fin R Ring A Ring
17 eqid Base A = Base A
18 17 5 ring0cl A Ring 0 ˙ Base A
19 16 18 syl N Fin R Ring 0 ˙ Base A
20 2 1 17 7 m2cpminvid N Fin R Ring 0 ˙ Base A I N matToPolyMat R 0 ˙ = 0 ˙
21 19 20 mpd3an3 N Fin R Ring I N matToPolyMat R 0 ˙ = 0 ˙
22 15 21 eqtrd N Fin R Ring I Z = 0 ˙