Metamath Proof Explorer


Theorem m2cpminvid

Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019) (Revised by AV, 13-Dec-2019)

Ref Expression
Hypotheses m2cpminvid.i I = N cPolyMatToMat R
m2cpminvid.a A = N Mat R
m2cpminvid.k K = Base A
m2cpminvid.t T = N matToPolyMat R
Assertion m2cpminvid N Fin R Ring M K I T M = M

Proof

Step Hyp Ref Expression
1 m2cpminvid.i I = N cPolyMatToMat R
2 m2cpminvid.a A = N Mat R
3 m2cpminvid.k K = Base A
4 m2cpminvid.t T = N matToPolyMat R
5 eqid N ConstPolyMat R = N ConstPolyMat R
6 5 4 2 3 m2cpm N Fin R Ring M K T M N ConstPolyMat R
7 1 5 cpm2mval N Fin R Ring T M N ConstPolyMat R I T M = x N , y N coe 1 x T M y 0
8 6 7 syld3an3 N Fin R Ring M K I T M = x N , y N coe 1 x T M y 0
9 eqid Poly 1 R = Poly 1 R
10 eqid algSc Poly 1 R = algSc Poly 1 R
11 4 2 3 9 10 mat2pmatvalel N Fin R Ring M K x N y N x T M y = algSc Poly 1 R x M y
12 11 3impb N Fin R Ring M K x N y N x T M y = algSc Poly 1 R x M y
13 12 fveq2d N Fin R Ring M K x N y N coe 1 x T M y = coe 1 algSc Poly 1 R x M y
14 13 fveq1d N Fin R Ring M K x N y N coe 1 x T M y 0 = coe 1 algSc Poly 1 R x M y 0
15 simp12 N Fin R Ring M K x N y N R Ring
16 eqid Base R = Base R
17 simp2 N Fin R Ring M K x N y N x N
18 simp3 N Fin R Ring M K x N y N y N
19 simp13 N Fin R Ring M K x N y N M K
20 2 16 3 17 18 19 matecld N Fin R Ring M K x N y N x M y Base R
21 9 10 16 ply1sclid R Ring x M y Base R x M y = coe 1 algSc Poly 1 R x M y 0
22 15 20 21 syl2anc N Fin R Ring M K x N y N x M y = coe 1 algSc Poly 1 R x M y 0
23 14 22 eqtr4d N Fin R Ring M K x N y N coe 1 x T M y 0 = x M y
24 23 mpoeq3dva N Fin R Ring M K x N , y N coe 1 x T M y 0 = x N , y N x M y
25 eqidd N Fin R Ring M K i N j N x N , y N x M y = x N , y N x M y
26 oveq12 x = i y = j x M y = i M j
27 26 adantl N Fin R Ring M K i N j N x = i y = j x M y = i M j
28 simprl N Fin R Ring M K i N j N i N
29 simprr N Fin R Ring M K i N j N j N
30 ovexd N Fin R Ring M K i N j N i M j V
31 25 27 28 29 30 ovmpod N Fin R Ring M K i N j N i x N , y N x M y j = i M j
32 31 ralrimivva N Fin R Ring M K i N j N i x N , y N x M y j = i M j
33 simp1 N Fin R Ring M K N Fin
34 simp2 N Fin R Ring M K R Ring
35 2 16 3 33 34 20 matbas2d N Fin R Ring M K x N , y N x M y K
36 simp3 N Fin R Ring M K M K
37 2 3 eqmat x N , y N x M y K M K x N , y N x M y = M i N j N i x N , y N x M y j = i M j
38 35 36 37 syl2anc N Fin R Ring M K x N , y N x M y = M i N j N i x N , y N x M y j = i M j
39 32 38 mpbird N Fin R Ring M K x N , y N x M y = M
40 8 24 39 3eqtrd N Fin R Ring M K I T M = M