Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpminvid2.s |
|
2 |
|
m2cpminvid2.i |
|
3 |
|
m2cpminvid2.t |
|
4 |
2 1
|
cpm2mval |
|
5 |
4
|
fveq2d |
|
6 |
|
simp1 |
|
7 |
|
simp2 |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
simp2 |
|
15 |
|
simp3 |
|
16 |
|
eqid |
|
17 |
1 16 11 13
|
cpmatpmat |
|
18 |
17
|
3ad2ant1 |
|
19 |
11 12 13 14 15 18
|
matecld |
|
20 |
|
0nn0 |
|
21 |
|
eqid |
|
22 |
21 12 16 9
|
coe1fvalcl |
|
23 |
19 20 22
|
sylancl |
|
24 |
8 9 10 6 7 23
|
matbas2d |
|
25 |
|
eqid |
|
26 |
3 8 10 16 25
|
mat2pmatval |
|
27 |
6 7 24 26
|
syl3anc |
|
28 |
|
eqidd |
|
29 |
|
oveq12 |
|
30 |
29
|
fveq2d |
|
31 |
30
|
fveq1d |
|
32 |
31
|
adantl |
|
33 |
|
simp2 |
|
34 |
|
simp3 |
|
35 |
|
fvexd |
|
36 |
28 32 33 34 35
|
ovmpod |
|
37 |
36
|
fveq2d |
|
38 |
37
|
mpoeq3dva |
|
39 |
27 38
|
eqtrd |
|
40 |
1 16
|
m2cpminvid2lem |
|
41 |
|
simpl2 |
|
42 |
|
simprl |
|
43 |
|
simprr |
|
44 |
17
|
adantr |
|
45 |
11 12 13 42 43 44
|
matecld |
|
46 |
45 20 22
|
sylancl |
|
47 |
16 25 9 12
|
ply1sclcl |
|
48 |
41 46 47
|
syl2anc |
|
49 |
|
eqid |
|
50 |
16 12 49 21
|
ply1coe1eq |
|
51 |
50
|
bicomd |
|
52 |
41 48 45 51
|
syl3anc |
|
53 |
40 52
|
mpbird |
|
54 |
53
|
ralrimivva |
|
55 |
|
eqidd |
|
56 |
|
oveq12 |
|
57 |
56
|
fveq2d |
|
58 |
57
|
fveq1d |
|
59 |
58
|
fveq2d |
|
60 |
59
|
adantl |
|
61 |
|
simplr |
|
62 |
|
simpr |
|
63 |
|
fvexd |
|
64 |
55 60 61 62 63
|
ovmpod |
|
65 |
64
|
eqeq1d |
|
66 |
65
|
anasss |
|
67 |
66
|
2ralbidva |
|
68 |
54 67
|
mpbird |
|
69 |
|
fvexd |
|
70 |
7
|
3ad2ant1 |
|
71 |
17
|
3ad2ant1 |
|
72 |
11 12 13 33 34 71
|
matecld |
|
73 |
|
eqid |
|
74 |
73 12 16 9
|
coe1fvalcl |
|
75 |
72 20 74
|
sylancl |
|
76 |
16 25 9 12
|
ply1sclcl |
|
77 |
70 75 76
|
syl2anc |
|
78 |
11 12 13 6 69 77
|
matbas2d |
|
79 |
11 13
|
eqmat |
|
80 |
78 17 79
|
syl2anc |
|
81 |
68 80
|
mpbird |
|
82 |
5 39 81
|
3eqtrd |
|