Metamath Proof Explorer


Theorem m2cpminvid2

Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019) (Revised by AV, 14-Dec-2019)

Ref Expression
Hypotheses m2cpminvid2.s S = N ConstPolyMat R
m2cpminvid2.i I = N cPolyMatToMat R
m2cpminvid2.t T = N matToPolyMat R
Assertion m2cpminvid2 N Fin R Ring M S T I M = M

Proof

Step Hyp Ref Expression
1 m2cpminvid2.s S = N ConstPolyMat R
2 m2cpminvid2.i I = N cPolyMatToMat R
3 m2cpminvid2.t T = N matToPolyMat R
4 2 1 cpm2mval N Fin R Ring M S I M = x N , y N coe 1 x M y 0
5 4 fveq2d N Fin R Ring M S T I M = T x N , y N coe 1 x M y 0
6 simp1 N Fin R Ring M S N Fin
7 simp2 N Fin R Ring M S R Ring
8 eqid N Mat R = N Mat R
9 eqid Base R = Base R
10 eqid Base N Mat R = Base N Mat R
11 eqid N Mat Poly 1 R = N Mat Poly 1 R
12 eqid Base Poly 1 R = Base Poly 1 R
13 eqid Base N Mat Poly 1 R = Base N Mat Poly 1 R
14 simp2 N Fin R Ring M S x N y N x N
15 simp3 N Fin R Ring M S x N y N y N
16 eqid Poly 1 R = Poly 1 R
17 1 16 11 13 cpmatpmat N Fin R Ring M S M Base N Mat Poly 1 R
18 17 3ad2ant1 N Fin R Ring M S x N y N M Base N Mat Poly 1 R
19 11 12 13 14 15 18 matecld N Fin R Ring M S x N y N x M y Base Poly 1 R
20 0nn0 0 0
21 eqid coe 1 x M y = coe 1 x M y
22 21 12 16 9 coe1fvalcl x M y Base Poly 1 R 0 0 coe 1 x M y 0 Base R
23 19 20 22 sylancl N Fin R Ring M S x N y N coe 1 x M y 0 Base R
24 8 9 10 6 7 23 matbas2d N Fin R Ring M S x N , y N coe 1 x M y 0 Base N Mat R
25 eqid algSc Poly 1 R = algSc Poly 1 R
26 3 8 10 16 25 mat2pmatval N Fin R Ring x N , y N coe 1 x M y 0 Base N Mat R T x N , y N coe 1 x M y 0 = i N , j N algSc Poly 1 R i x N , y N coe 1 x M y 0 j
27 6 7 24 26 syl3anc N Fin R Ring M S T x N , y N coe 1 x M y 0 = i N , j N algSc Poly 1 R i x N , y N coe 1 x M y 0 j
28 eqidd N Fin R Ring M S i N j N x N , y N coe 1 x M y 0 = x N , y N coe 1 x M y 0
29 oveq12 x = i y = j x M y = i M j
30 29 fveq2d x = i y = j coe 1 x M y = coe 1 i M j
31 30 fveq1d x = i y = j coe 1 x M y 0 = coe 1 i M j 0
32 31 adantl N Fin R Ring M S i N j N x = i y = j coe 1 x M y 0 = coe 1 i M j 0
33 simp2 N Fin R Ring M S i N j N i N
34 simp3 N Fin R Ring M S i N j N j N
35 fvexd N Fin R Ring M S i N j N coe 1 i M j 0 V
36 28 32 33 34 35 ovmpod N Fin R Ring M S i N j N i x N , y N coe 1 x M y 0 j = coe 1 i M j 0
37 36 fveq2d N Fin R Ring M S i N j N algSc Poly 1 R i x N , y N coe 1 x M y 0 j = algSc Poly 1 R coe 1 i M j 0
38 37 mpoeq3dva N Fin R Ring M S i N , j N algSc Poly 1 R i x N , y N coe 1 x M y 0 j = i N , j N algSc Poly 1 R coe 1 i M j 0
39 27 38 eqtrd N Fin R Ring M S T x N , y N coe 1 x M y 0 = i N , j N algSc Poly 1 R coe 1 i M j 0
40 1 16 m2cpminvid2lem N Fin R Ring M S x N y N n 0 coe 1 algSc Poly 1 R coe 1 x M y 0 n = coe 1 x M y n
41 simpl2 N Fin R Ring M S x N y N R Ring
42 simprl N Fin R Ring M S x N y N x N
43 simprr N Fin R Ring M S x N y N y N
44 17 adantr N Fin R Ring M S x N y N M Base N Mat Poly 1 R
45 11 12 13 42 43 44 matecld N Fin R Ring M S x N y N x M y Base Poly 1 R
46 45 20 22 sylancl N Fin R Ring M S x N y N coe 1 x M y 0 Base R
47 16 25 9 12 ply1sclcl R Ring coe 1 x M y 0 Base R algSc Poly 1 R coe 1 x M y 0 Base Poly 1 R
48 41 46 47 syl2anc N Fin R Ring M S x N y N algSc Poly 1 R coe 1 x M y 0 Base Poly 1 R
49 eqid coe 1 algSc Poly 1 R coe 1 x M y 0 = coe 1 algSc Poly 1 R coe 1 x M y 0
50 16 12 49 21 ply1coe1eq R Ring algSc Poly 1 R coe 1 x M y 0 Base Poly 1 R x M y Base Poly 1 R n 0 coe 1 algSc Poly 1 R coe 1 x M y 0 n = coe 1 x M y n algSc Poly 1 R coe 1 x M y 0 = x M y
51 50 bicomd R Ring algSc Poly 1 R coe 1 x M y 0 Base Poly 1 R x M y Base Poly 1 R algSc Poly 1 R coe 1 x M y 0 = x M y n 0 coe 1 algSc Poly 1 R coe 1 x M y 0 n = coe 1 x M y n
52 41 48 45 51 syl3anc N Fin R Ring M S x N y N algSc Poly 1 R coe 1 x M y 0 = x M y n 0 coe 1 algSc Poly 1 R coe 1 x M y 0 n = coe 1 x M y n
53 40 52 mpbird N Fin R Ring M S x N y N algSc Poly 1 R coe 1 x M y 0 = x M y
54 53 ralrimivva N Fin R Ring M S x N y N algSc Poly 1 R coe 1 x M y 0 = x M y
55 eqidd N Fin R Ring M S x N y N i N , j N algSc Poly 1 R coe 1 i M j 0 = i N , j N algSc Poly 1 R coe 1 i M j 0
56 oveq12 i = x j = y i M j = x M y
57 56 fveq2d i = x j = y coe 1 i M j = coe 1 x M y
58 57 fveq1d i = x j = y coe 1 i M j 0 = coe 1 x M y 0
59 58 fveq2d i = x j = y algSc Poly 1 R coe 1 i M j 0 = algSc Poly 1 R coe 1 x M y 0
60 59 adantl N Fin R Ring M S x N y N i = x j = y algSc Poly 1 R coe 1 i M j 0 = algSc Poly 1 R coe 1 x M y 0
61 simplr N Fin R Ring M S x N y N x N
62 simpr N Fin R Ring M S x N y N y N
63 fvexd N Fin R Ring M S x N y N algSc Poly 1 R coe 1 x M y 0 V
64 55 60 61 62 63 ovmpod N Fin R Ring M S x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = algSc Poly 1 R coe 1 x M y 0
65 64 eqeq1d N Fin R Ring M S x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = x M y algSc Poly 1 R coe 1 x M y 0 = x M y
66 65 anasss N Fin R Ring M S x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = x M y algSc Poly 1 R coe 1 x M y 0 = x M y
67 66 2ralbidva N Fin R Ring M S x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = x M y x N y N algSc Poly 1 R coe 1 x M y 0 = x M y
68 54 67 mpbird N Fin R Ring M S x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = x M y
69 fvexd N Fin R Ring M S Poly 1 R V
70 7 3ad2ant1 N Fin R Ring M S i N j N R Ring
71 17 3ad2ant1 N Fin R Ring M S i N j N M Base N Mat Poly 1 R
72 11 12 13 33 34 71 matecld N Fin R Ring M S i N j N i M j Base Poly 1 R
73 eqid coe 1 i M j = coe 1 i M j
74 73 12 16 9 coe1fvalcl i M j Base Poly 1 R 0 0 coe 1 i M j 0 Base R
75 72 20 74 sylancl N Fin R Ring M S i N j N coe 1 i M j 0 Base R
76 16 25 9 12 ply1sclcl R Ring coe 1 i M j 0 Base R algSc Poly 1 R coe 1 i M j 0 Base Poly 1 R
77 70 75 76 syl2anc N Fin R Ring M S i N j N algSc Poly 1 R coe 1 i M j 0 Base Poly 1 R
78 11 12 13 6 69 77 matbas2d N Fin R Ring M S i N , j N algSc Poly 1 R coe 1 i M j 0 Base N Mat Poly 1 R
79 11 13 eqmat i N , j N algSc Poly 1 R coe 1 i M j 0 Base N Mat Poly 1 R M Base N Mat Poly 1 R i N , j N algSc Poly 1 R coe 1 i M j 0 = M x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = x M y
80 78 17 79 syl2anc N Fin R Ring M S i N , j N algSc Poly 1 R coe 1 i M j 0 = M x N y N x i N , j N algSc Poly 1 R coe 1 i M j 0 y = x M y
81 68 80 mpbird N Fin R Ring M S i N , j N algSc Poly 1 R coe 1 i M j 0 = M
82 5 39 81 3eqtrd N Fin R Ring M S T I M = M