Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpminvid2lem.s |
|
2 |
|
m2cpminvid2lem.p |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
1 2 3 4
|
cpmatelimp |
|
6 |
5
|
3impia |
|
7 |
6
|
simprd |
|
8 |
7
|
adantr |
|
9 |
|
fvoveq1 |
|
10 |
9
|
fveq1d |
|
11 |
10
|
eqeq1d |
|
12 |
11
|
ralbidv |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
14
|
fveq1d |
|
16 |
15
|
eqeq1d |
|
17 |
16
|
ralbidv |
|
18 |
12 17
|
rspc2v |
|
19 |
18
|
adantl |
|
20 |
|
fveqeq2 |
|
21 |
20
|
cbvralvw |
|
22 |
|
simpl2 |
|
23 |
|
eqid |
|
24 |
|
simprl |
|
25 |
|
simprr |
|
26 |
1 2 3 4
|
cpmatpmat |
|
27 |
26
|
adantr |
|
28 |
3 23 4 24 25 27
|
matecld |
|
29 |
|
0nn0 |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
30 23 2 31
|
coe1fvalcl |
|
33 |
28 29 32
|
sylancl |
|
34 |
22 33
|
jca |
|
35 |
34
|
adantr |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
2 36 31 37
|
coe1scl |
|
39 |
35 38
|
syl |
|
40 |
39
|
fveq1d |
|
41 |
|
eqidd |
|
42 |
|
eqeq1 |
|
43 |
42
|
ifbid |
|
44 |
43
|
adantl |
|
45 |
|
nnnn0 |
|
46 |
45
|
adantl |
|
47 |
|
fvex |
|
48 |
|
fvex |
|
49 |
47 48
|
ifex |
|
50 |
49
|
a1i |
|
51 |
41 44 46 50
|
fvmptd |
|
52 |
|
nnne0 |
|
53 |
52
|
neneqd |
|
54 |
53
|
adantl |
|
55 |
54
|
iffalsed |
|
56 |
40 51 55
|
3eqtrd |
|
57 |
|
eqcom |
|
58 |
57
|
biimpi |
|
59 |
56 58
|
sylan9eq |
|
60 |
59
|
ex |
|
61 |
60
|
ralimdva |
|
62 |
61
|
imp |
|
63 |
34
|
adantr |
|
64 |
2 36 31
|
ply1sclid |
|
65 |
64
|
eqcomd |
|
66 |
63 65
|
syl |
|
67 |
62 66
|
jca |
|
68 |
67
|
ex |
|
69 |
21 68
|
syl5bi |
|
70 |
19 69
|
syld |
|
71 |
8 70
|
mpd |
|
72 |
|
c0ex |
|
73 |
|
fveq2 |
|
74 |
|
fveq2 |
|
75 |
73 74
|
eqeq12d |
|
76 |
75
|
ralunsn |
|
77 |
72 76
|
mp1i |
|
78 |
71 77
|
mpbird |
|
79 |
|
df-n0 |
|
80 |
79
|
raleqi |
|
81 |
78 80
|
sylibr |
|