Metamath Proof Explorer


Theorem m2cpminvid2lem

Description: Lemma for m2cpminvid2 . (Contributed by AV, 12-Nov-2019) (Revised by AV, 14-Dec-2019)

Ref Expression
Hypotheses m2cpminvid2lem.s S = N ConstPolyMat R
m2cpminvid2lem.p P = Poly 1 R
Assertion m2cpminvid2lem N Fin R Ring M S x N y N n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n

Proof

Step Hyp Ref Expression
1 m2cpminvid2lem.s S = N ConstPolyMat R
2 m2cpminvid2lem.p P = Poly 1 R
3 eqid N Mat P = N Mat P
4 eqid Base N Mat P = Base N Mat P
5 1 2 3 4 cpmatelimp N Fin R Ring M S M Base N Mat P i N j N k coe 1 i M j k = 0 R
6 5 3impia N Fin R Ring M S M Base N Mat P i N j N k coe 1 i M j k = 0 R
7 6 simprd N Fin R Ring M S i N j N k coe 1 i M j k = 0 R
8 7 adantr N Fin R Ring M S x N y N i N j N k coe 1 i M j k = 0 R
9 fvoveq1 i = x coe 1 i M j = coe 1 x M j
10 9 fveq1d i = x coe 1 i M j k = coe 1 x M j k
11 10 eqeq1d i = x coe 1 i M j k = 0 R coe 1 x M j k = 0 R
12 11 ralbidv i = x k coe 1 i M j k = 0 R k coe 1 x M j k = 0 R
13 oveq2 j = y x M j = x M y
14 13 fveq2d j = y coe 1 x M j = coe 1 x M y
15 14 fveq1d j = y coe 1 x M j k = coe 1 x M y k
16 15 eqeq1d j = y coe 1 x M j k = 0 R coe 1 x M y k = 0 R
17 16 ralbidv j = y k coe 1 x M j k = 0 R k coe 1 x M y k = 0 R
18 12 17 rspc2v x N y N i N j N k coe 1 i M j k = 0 R k coe 1 x M y k = 0 R
19 18 adantl N Fin R Ring M S x N y N i N j N k coe 1 i M j k = 0 R k coe 1 x M y k = 0 R
20 fveqeq2 k = n coe 1 x M y k = 0 R coe 1 x M y n = 0 R
21 20 cbvralvw k coe 1 x M y k = 0 R n coe 1 x M y n = 0 R
22 simpl2 N Fin R Ring M S x N y N R Ring
23 eqid Base P = Base P
24 simprl N Fin R Ring M S x N y N x N
25 simprr N Fin R Ring M S x N y N y N
26 1 2 3 4 cpmatpmat N Fin R Ring M S M Base N Mat P
27 26 adantr N Fin R Ring M S x N y N M Base N Mat P
28 3 23 4 24 25 27 matecld N Fin R Ring M S x N y N x M y Base P
29 0nn0 0 0
30 eqid coe 1 x M y = coe 1 x M y
31 eqid Base R = Base R
32 30 23 2 31 coe1fvalcl x M y Base P 0 0 coe 1 x M y 0 Base R
33 28 29 32 sylancl N Fin R Ring M S x N y N coe 1 x M y 0 Base R
34 22 33 jca N Fin R Ring M S x N y N R Ring coe 1 x M y 0 Base R
35 34 adantr N Fin R Ring M S x N y N n R Ring coe 1 x M y 0 Base R
36 eqid algSc P = algSc P
37 eqid 0 R = 0 R
38 2 36 31 37 coe1scl R Ring coe 1 x M y 0 Base R coe 1 algSc P coe 1 x M y 0 = l 0 if l = 0 coe 1 x M y 0 0 R
39 35 38 syl N Fin R Ring M S x N y N n coe 1 algSc P coe 1 x M y 0 = l 0 if l = 0 coe 1 x M y 0 0 R
40 39 fveq1d N Fin R Ring M S x N y N n coe 1 algSc P coe 1 x M y 0 n = l 0 if l = 0 coe 1 x M y 0 0 R n
41 eqidd N Fin R Ring M S x N y N n l 0 if l = 0 coe 1 x M y 0 0 R = l 0 if l = 0 coe 1 x M y 0 0 R
42 eqeq1 l = n l = 0 n = 0
43 42 ifbid l = n if l = 0 coe 1 x M y 0 0 R = if n = 0 coe 1 x M y 0 0 R
44 43 adantl N Fin R Ring M S x N y N n l = n if l = 0 coe 1 x M y 0 0 R = if n = 0 coe 1 x M y 0 0 R
45 nnnn0 n n 0
46 45 adantl N Fin R Ring M S x N y N n n 0
47 fvex coe 1 x M y 0 V
48 fvex 0 R V
49 47 48 ifex if n = 0 coe 1 x M y 0 0 R V
50 49 a1i N Fin R Ring M S x N y N n if n = 0 coe 1 x M y 0 0 R V
51 41 44 46 50 fvmptd N Fin R Ring M S x N y N n l 0 if l = 0 coe 1 x M y 0 0 R n = if n = 0 coe 1 x M y 0 0 R
52 nnne0 n n 0
53 52 neneqd n ¬ n = 0
54 53 adantl N Fin R Ring M S x N y N n ¬ n = 0
55 54 iffalsed N Fin R Ring M S x N y N n if n = 0 coe 1 x M y 0 0 R = 0 R
56 40 51 55 3eqtrd N Fin R Ring M S x N y N n coe 1 algSc P coe 1 x M y 0 n = 0 R
57 eqcom coe 1 x M y n = 0 R 0 R = coe 1 x M y n
58 57 biimpi coe 1 x M y n = 0 R 0 R = coe 1 x M y n
59 56 58 sylan9eq N Fin R Ring M S x N y N n coe 1 x M y n = 0 R coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n
60 59 ex N Fin R Ring M S x N y N n coe 1 x M y n = 0 R coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n
61 60 ralimdva N Fin R Ring M S x N y N n coe 1 x M y n = 0 R n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n
62 61 imp N Fin R Ring M S x N y N n coe 1 x M y n = 0 R n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n
63 34 adantr N Fin R Ring M S x N y N n coe 1 x M y n = 0 R R Ring coe 1 x M y 0 Base R
64 2 36 31 ply1sclid R Ring coe 1 x M y 0 Base R coe 1 x M y 0 = coe 1 algSc P coe 1 x M y 0 0
65 64 eqcomd R Ring coe 1 x M y 0 Base R coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
66 63 65 syl N Fin R Ring M S x N y N n coe 1 x M y n = 0 R coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
67 62 66 jca N Fin R Ring M S x N y N n coe 1 x M y n = 0 R n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
68 67 ex N Fin R Ring M S x N y N n coe 1 x M y n = 0 R n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
69 21 68 syl5bi N Fin R Ring M S x N y N k coe 1 x M y k = 0 R n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
70 19 69 syld N Fin R Ring M S x N y N i N j N k coe 1 i M j k = 0 R n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
71 8 70 mpd N Fin R Ring M S x N y N n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
72 c0ex 0 V
73 fveq2 n = 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 algSc P coe 1 x M y 0 0
74 fveq2 n = 0 coe 1 x M y n = coe 1 x M y 0
75 73 74 eqeq12d n = 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
76 75 ralunsn 0 V n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
77 72 76 mp1i N Fin R Ring M S x N y N n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n n coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n coe 1 algSc P coe 1 x M y 0 0 = coe 1 x M y 0
78 71 77 mpbird N Fin R Ring M S x N y N n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n
79 df-n0 0 = 0
80 79 raleqi n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n
81 78 80 sylibr N Fin R Ring M S x N y N n 0 coe 1 algSc P coe 1 x M y 0 n = coe 1 x M y n