Metamath Proof Explorer


Theorem m2cpmrhm

Description: The transformation of matrices into constant polynomial matrices is a ring homomorphism. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S = N ConstPolyMat R
m2cpm.t T = N matToPolyMat R
m2cpm.a A = N Mat R
m2cpm.b B = Base A
m2cpmghm.p P = Poly 1 R
m2cpmghm.c C = N Mat P
m2cpmghm.u U = C 𝑠 S
Assertion m2cpmrhm N Fin R CRing T A RingHom U

Proof

Step Hyp Ref Expression
1 m2cpm.s S = N ConstPolyMat R
2 m2cpm.t T = N matToPolyMat R
3 m2cpm.a A = N Mat R
4 m2cpm.b B = Base A
5 m2cpmghm.p P = Poly 1 R
6 m2cpmghm.c C = N Mat P
7 m2cpmghm.u U = C 𝑠 S
8 crngring R CRing R Ring
9 3 matring N Fin R Ring A Ring
10 8 9 sylan2 N Fin R CRing A Ring
11 1 5 6 cpmatsrgpmat N Fin R Ring S SubRing C
12 8 11 sylan2 N Fin R CRing S SubRing C
13 7 subrgring S SubRing C U Ring
14 12 13 syl N Fin R CRing U Ring
15 1 2 3 4 5 6 7 m2cpmghm N Fin R Ring T A GrpHom U
16 8 15 sylan2 N Fin R CRing T A GrpHom U
17 1 2 3 4 5 6 7 m2cpmmhm N Fin R CRing T mulGrp A MndHom mulGrp U
18 16 17 jca N Fin R CRing T A GrpHom U T mulGrp A MndHom mulGrp U
19 eqid mulGrp A = mulGrp A
20 eqid mulGrp U = mulGrp U
21 19 20 isrhm T A RingHom U A Ring U Ring T A GrpHom U T mulGrp A MndHom mulGrp U
22 10 14 18 21 syl21anbrc N Fin R CRing T A RingHom U