Metamath Proof Explorer


Theorem m2detleib

Description: Leibniz' Formula for 2x2-matrices. (Contributed by AV, 21-Dec-2018) (Revised by AV, 26-Dec-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses m2detleib.n N = 1 2
m2detleib.d D = N maDet R
m2detleib.a A = N Mat R
m2detleib.b B = Base A
m2detleib.m - ˙ = - R
m2detleib.t · ˙ = R
Assertion m2detleib R Ring M B D M = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2

Proof

Step Hyp Ref Expression
1 m2detleib.n N = 1 2
2 m2detleib.d D = N maDet R
3 m2detleib.a A = N Mat R
4 m2detleib.b B = Base A
5 m2detleib.m - ˙ = - R
6 m2detleib.t · ˙ = R
7 eqid Base SymGrp N = Base SymGrp N
8 eqid ℤRHom R = ℤRHom R
9 eqid pmSgn N = pmSgn N
10 eqid mulGrp R = mulGrp R
11 2 3 4 7 8 9 6 10 mdetleib1 M B D M = R k Base SymGrp N ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n
12 11 adantl R Ring M B D M = R k Base SymGrp N ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n
13 eqid Base R = Base R
14 eqid + R = + R
15 ringcmn R Ring R CMnd
16 15 adantr R Ring M B R CMnd
17 prfi 1 2 Fin
18 1 17 eqeltri N Fin
19 eqid SymGrp N = SymGrp N
20 19 7 symgbasfi N Fin Base SymGrp N Fin
21 18 20 ax-mp Base SymGrp N Fin
22 21 a1i R Ring M B Base SymGrp N Fin
23 simpl R Ring M B R Ring
24 23 adantr R Ring M B k Base SymGrp N R Ring
25 7 9 8 zrhpsgnelbas R Ring N Fin k Base SymGrp N ℤRHom R pmSgn N k Base R
26 18 25 mp3an2 R Ring k Base SymGrp N ℤRHom R pmSgn N k Base R
27 26 adantlr R Ring M B k Base SymGrp N ℤRHom R pmSgn N k Base R
28 simpr R Ring M B k Base SymGrp N k Base SymGrp N
29 simpr R Ring M B M B
30 29 adantr R Ring M B k Base SymGrp N M B
31 1 7 3 4 10 m2detleiblem2 R Ring k Base SymGrp N M B mulGrp R n N k n M n Base R
32 24 28 30 31 syl3anc R Ring M B k Base SymGrp N mulGrp R n N k n M n Base R
33 13 6 ringcl R Ring ℤRHom R pmSgn N k Base R mulGrp R n N k n M n Base R ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n Base R
34 24 27 32 33 syl3anc R Ring M B k Base SymGrp N ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n Base R
35 opex 1 1 V
36 opex 2 2 V
37 35 36 pm3.2i 1 1 V 2 2 V
38 opex 1 2 V
39 opex 2 1 V
40 38 39 pm3.2i 1 2 V 2 1 V
41 37 40 pm3.2i 1 1 V 2 2 V 1 2 V 2 1 V
42 1ne2 1 2
43 42 olci 1 1 1 2
44 1ex 1 V
45 44 44 opthne 1 1 1 2 1 1 1 2
46 43 45 mpbir 1 1 1 2
47 42 orci 1 2 1 1
48 44 44 opthne 1 1 2 1 1 2 1 1
49 47 48 mpbir 1 1 2 1
50 46 49 pm3.2i 1 1 1 2 1 1 2 1
51 50 orci 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 1
52 41 51 pm3.2i 1 1 V 2 2 V 1 2 V 2 1 V 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 1
53 52 a1i R Ring M B 1 1 V 2 2 V 1 2 V 2 1 V 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 1
54 prneimg 1 1 V 2 2 V 1 2 V 2 1 V 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 1 1 1 2 2 1 2 2 1
55 54 imp 1 1 V 2 2 V 1 2 V 2 1 V 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 1 1 1 2 2 1 2 2 1
56 disjsn2 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 =
57 53 55 56 3syl R Ring M B 1 1 2 2 1 2 2 1 =
58 2nn 2
59 19 7 1 symg2bas 1 V 2 Base SymGrp N = 1 1 2 2 1 2 2 1
60 44 58 59 mp2an Base SymGrp N = 1 1 2 2 1 2 2 1
61 df-pr 1 1 2 2 1 2 2 1 = 1 1 2 2 1 2 2 1
62 60 61 eqtri Base SymGrp N = 1 1 2 2 1 2 2 1
63 62 a1i R Ring M B Base SymGrp N = 1 1 2 2 1 2 2 1
64 13 14 16 22 34 57 63 gsummptfidmsplit R Ring M B R k Base SymGrp N ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = R k 1 1 2 2 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n + R R k 1 2 2 1 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n
65 ringmnd R Ring R Mnd
66 65 adantr R Ring M B R Mnd
67 prex 1 1 2 2 V
68 67 a1i R Ring M B 1 1 2 2 V
69 67 prid1 1 1 2 2 1 1 2 2 1 2 2 1
70 69 60 eleqtrri 1 1 2 2 Base SymGrp N
71 70 a1i M B 1 1 2 2 Base SymGrp N
72 7 9 8 zrhpsgnelbas R Ring N Fin 1 1 2 2 Base SymGrp N ℤRHom R pmSgn N 1 1 2 2 Base R
73 18 72 mp3an2 R Ring 1 1 2 2 Base SymGrp N ℤRHom R pmSgn N 1 1 2 2 Base R
74 71 73 sylan2 R Ring M B ℤRHom R pmSgn N 1 1 2 2 Base R
75 1 7 3 4 10 m2detleiblem2 R Ring 1 1 2 2 Base SymGrp N M B mulGrp R n N 1 1 2 2 n M n Base R
76 70 75 mp3an2 R Ring M B mulGrp R n N 1 1 2 2 n M n Base R
77 13 6 ringcl R Ring ℤRHom R pmSgn N 1 1 2 2 Base R mulGrp R n N 1 1 2 2 n M n Base R ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n Base R
78 23 74 76 77 syl3anc R Ring M B ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n Base R
79 2fveq3 k = 1 1 2 2 ℤRHom R pmSgn N k = ℤRHom R pmSgn N 1 1 2 2
80 fveq1 k = 1 1 2 2 k n = 1 1 2 2 n
81 80 oveq1d k = 1 1 2 2 k n M n = 1 1 2 2 n M n
82 81 mpteq2dv k = 1 1 2 2 n N k n M n = n N 1 1 2 2 n M n
83 82 oveq2d k = 1 1 2 2 mulGrp R n N k n M n = mulGrp R n N 1 1 2 2 n M n
84 79 83 oveq12d k = 1 1 2 2 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n
85 13 84 gsumsn R Mnd 1 1 2 2 V ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n Base R R k 1 1 2 2 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n
86 66 68 78 85 syl3anc R Ring M B R k 1 1 2 2 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n
87 prex 1 2 2 1 V
88 87 a1i R Ring M B 1 2 2 1 V
89 87 prid2 1 2 2 1 1 1 2 2 1 2 2 1
90 89 60 eleqtrri 1 2 2 1 Base SymGrp N
91 90 a1i M B 1 2 2 1 Base SymGrp N
92 7 9 8 zrhpsgnelbas R Ring N Fin 1 2 2 1 Base SymGrp N ℤRHom R pmSgn N 1 2 2 1 Base R
93 18 92 mp3an2 R Ring 1 2 2 1 Base SymGrp N ℤRHom R pmSgn N 1 2 2 1 Base R
94 91 93 sylan2 R Ring M B ℤRHom R pmSgn N 1 2 2 1 Base R
95 1 7 3 4 10 m2detleiblem2 R Ring 1 2 2 1 Base SymGrp N M B mulGrp R n N 1 2 2 1 n M n Base R
96 90 95 mp3an2 R Ring M B mulGrp R n N 1 2 2 1 n M n Base R
97 13 6 ringcl R Ring ℤRHom R pmSgn N 1 2 2 1 Base R mulGrp R n N 1 2 2 1 n M n Base R ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n Base R
98 23 94 96 97 syl3anc R Ring M B ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n Base R
99 2fveq3 k = 1 2 2 1 ℤRHom R pmSgn N k = ℤRHom R pmSgn N 1 2 2 1
100 fveq1 k = 1 2 2 1 k n = 1 2 2 1 n
101 100 oveq1d k = 1 2 2 1 k n M n = 1 2 2 1 n M n
102 101 mpteq2dv k = 1 2 2 1 n N k n M n = n N 1 2 2 1 n M n
103 102 oveq2d k = 1 2 2 1 mulGrp R n N k n M n = mulGrp R n N 1 2 2 1 n M n
104 99 103 oveq12d k = 1 2 2 1 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n
105 13 104 gsumsn R Mnd 1 2 2 1 V ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n Base R R k 1 2 2 1 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n
106 66 88 98 105 syl3anc R Ring M B R k 1 2 2 1 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n
107 86 106 oveq12d R Ring M B R k 1 1 2 2 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n + R R k 1 2 2 1 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n + R ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n
108 eqidd M B 1 1 2 2 = 1 1 2 2
109 eqid 1 R = 1 R
110 1 7 8 9 109 m2detleiblem5 R Ring 1 1 2 2 = 1 1 2 2 ℤRHom R pmSgn N 1 1 2 2 = 1 R
111 108 110 sylan2 R Ring M B ℤRHom R pmSgn N 1 1 2 2 = 1 R
112 eqidd R Ring M B 1 1 2 2 = 1 1 2 2
113 10 6 mgpplusg · ˙ = + mulGrp R
114 1 7 3 4 10 113 m2detleiblem3 R Ring 1 1 2 2 = 1 1 2 2 M B mulGrp R n N 1 1 2 2 n M n = 1 M 1 · ˙ 2 M 2
115 23 112 29 114 syl3anc R Ring M B mulGrp R n N 1 1 2 2 n M n = 1 M 1 · ˙ 2 M 2
116 111 115 oveq12d R Ring M B ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n = 1 R · ˙ 1 M 1 · ˙ 2 M 2
117 44 prid1 1 1 2
118 117 1 eleqtrri 1 N
119 118 a1i R Ring M B 1 N
120 4 eleq2i M B M Base A
121 120 biimpi M B M Base A
122 121 adantl R Ring M B M Base A
123 3 13 matecl 1 N 1 N M Base A 1 M 1 Base R
124 119 119 122 123 syl3anc R Ring M B 1 M 1 Base R
125 prid2g 2 2 1 2
126 58 125 ax-mp 2 1 2
127 126 1 eleqtrri 2 N
128 127 a1i R Ring M B 2 N
129 3 13 matecl 2 N 2 N M Base A 2 M 2 Base R
130 128 128 122 129 syl3anc R Ring M B 2 M 2 Base R
131 13 6 ringcl R Ring 1 M 1 Base R 2 M 2 Base R 1 M 1 · ˙ 2 M 2 Base R
132 23 124 130 131 syl3anc R Ring M B 1 M 1 · ˙ 2 M 2 Base R
133 13 6 109 ringlidm R Ring 1 M 1 · ˙ 2 M 2 Base R 1 R · ˙ 1 M 1 · ˙ 2 M 2 = 1 M 1 · ˙ 2 M 2
134 132 133 syldan R Ring M B 1 R · ˙ 1 M 1 · ˙ 2 M 2 = 1 M 1 · ˙ 2 M 2
135 116 134 eqtrd R Ring M B ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n = 1 M 1 · ˙ 2 M 2
136 eqidd M B 1 2 2 1 = 1 2 2 1
137 eqid inv g R = inv g R
138 1 7 8 9 109 137 m2detleiblem6 R Ring 1 2 2 1 = 1 2 2 1 ℤRHom R pmSgn N 1 2 2 1 = inv g R 1 R
139 136 138 sylan2 R Ring M B ℤRHom R pmSgn N 1 2 2 1 = inv g R 1 R
140 eqidd R Ring M B 1 2 2 1 = 1 2 2 1
141 1 7 3 4 10 113 m2detleiblem4 R Ring 1 2 2 1 = 1 2 2 1 M B mulGrp R n N 1 2 2 1 n M n = 2 M 1 · ˙ 1 M 2
142 23 140 29 141 syl3anc R Ring M B mulGrp R n N 1 2 2 1 n M n = 2 M 1 · ˙ 1 M 2
143 139 142 oveq12d R Ring M B ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n = inv g R 1 R · ˙ 2 M 1 · ˙ 1 M 2
144 135 143 oveq12d R Ring M B ℤRHom R pmSgn N 1 1 2 2 · ˙ mulGrp R n N 1 1 2 2 n M n + R ℤRHom R pmSgn N 1 2 2 1 · ˙ mulGrp R n N 1 2 2 1 n M n = 1 M 1 · ˙ 2 M 2 + R inv g R 1 R · ˙ 2 M 1 · ˙ 1 M 2
145 3 13 matecl 2 N 1 N M Base A 2 M 1 Base R
146 128 119 122 145 syl3anc R Ring M B 2 M 1 Base R
147 3 13 matecl 1 N 2 N M Base A 1 M 2 Base R
148 119 128 122 147 syl3anc R Ring M B 1 M 2 Base R
149 13 6 ringcl R Ring 2 M 1 Base R 1 M 2 Base R 2 M 1 · ˙ 1 M 2 Base R
150 23 146 148 149 syl3anc R Ring M B 2 M 1 · ˙ 1 M 2 Base R
151 1 7 8 9 109 137 6 5 m2detleiblem7 R Ring 1 M 1 · ˙ 2 M 2 Base R 2 M 1 · ˙ 1 M 2 Base R 1 M 1 · ˙ 2 M 2 + R inv g R 1 R · ˙ 2 M 1 · ˙ 1 M 2 = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2
152 23 132 150 151 syl3anc R Ring M B 1 M 1 · ˙ 2 M 2 + R inv g R 1 R · ˙ 2 M 1 · ˙ 1 M 2 = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2
153 107 144 152 3eqtrd R Ring M B R k 1 1 2 2 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n + R R k 1 2 2 1 ℤRHom R pmSgn N k · ˙ mulGrp R n N k n M n = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2
154 12 64 153 3eqtrd R Ring M B D M = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2